Diversity and ecology of pollinators in the Pacific Northwest with emphasis on native bees

Eugene Miliczky
USDA-ARS
Yakima Agricultural Research Lab.
Wapato, WA
Native pollinators include:

- Certain birds: ex. Hummingbirds
- Certain bats: Pacific Northwest??
- Insects: many flower visiting insects
 - Wasps – many visit flowers for nectar
 - Flies – flower flies, bee flies, et al.
 - Butterflies & Moths – some specialized pollinators
 - Beetles – some feed on pollen & flower parts; can be destructive
 - Many others are incidental flower visitors
- Bees – most important, abundant, specialized
Why are bees such good pollinators?

- Require large quantities of pollen to feed their young
- Most bees are hairy
- Pollen collecting/transport structures
- Specialized pollen collecting behavior
- Flower fidelity is well developed
- **Bees just plain work hard:** “Busy as a bee”
Bees vs. wasps: What’s the difference?

- **Bees**
 - Tend to be hairy and at least some hairs are branched or feathery
 - Lack reflective hairs on the face
 - Pollen is the protein source used to feed the young

- **Wasps**
 - Relatively non-hairy and all hairs are simple
 - Many have reflective hairs on the face (Sphecidae)
 - Protein source for the young is insects and spiders
Bee species richness

- World fauna: >17,500 named species (2007); ca. 20,000 in total
- 7 large groups (families) currently recognized: 6 occur in PNW
- Pacific Northwest: ~1000 spp.
- Washington: 500+? (undercollected)
- Yakima River Canyon: >100 spp.
Bee ecology I: Social vs. solitary

Social
- Honeybee, bumblebees, sweat bees
- live in colonies
- Queen is primary egg-layer
- Workers (females) maintain the nest and collect food
- Males – only interested in sex

Solitary
- ~85% of all bees – 15,000+ species
- Each female constructs her own nest and rears 10 or so young
- Males – only interested in sex
Bee ecology II: solitary bee life cycles

- Most species have 1 generation/year
- Adults actively flying for only 5 or 6 weeks/year; rest of year spent in inactive state
- Period of adult activity corresponds with flowering of important host plant(s)
- As a result we see a turnover of species over the course of the season
- Reproductive output: ~1 offspring per day; 5-20 in a female’s lifetime
- Larval food: a mix of pollen and nectar
- Overwintering: as an adult or mature larva in the natal cell
Bee ecology III: Solitary bee nests

- **Ground nesting**: construct cells in the soil, majority of species: ex. *Andrena* - 1400+ species, *Perdita* - 600+ species

- **Above-ground nesting**: significant minority
 - pre-existing tunnels in wood (beetle borings)
 - pithy stems of sumac, elderberry, etc.
 - rotten wood/logs – a few species
 - free standing: made of mud or plant material
 - opportunistic use of nail holes, electrical outlets, human provided trap nests
Bee ecology IV: Long-tongued vs short-tongued bees

- Based on the structure and relative length of the tongue or proboscis
- Long-tongue bees: honeybee, bumblebees, digger bees, leafcutters
- Short-tongue bees: sweat bees, sand bees, membrane bees
- Tongue length determines whether a bee can reach nectar in a flower
Bee ecology V: floral relationships

- **Pollen use:**
 - **Polylectic bees** (pollen generalists) collect pollen from plants in several (many) plant families. Many species.
 - **Oligolectic bees** (pollen specialists) collect pollen from a single genus or several related genera of plants. Many species.
 - **Monolectic bees** utilize a single species of plant for pollen. A few species?
Bee ecology VI: pollen bees and cuckoo bees

- **Pollen-collecting bees**: these species are typical, hard-working bees.

- **Cuckoo (cleptoparasitic) bees**:
 - Female lays egg in nest of suitable host bee
 - Cuckoo larva kills host egg or larva & feeds on pollen stored by the female host bee
 - Cuckoo adults and larvae are specialized for the parasitic way of life
 - Hundreds of species of cuckoo bees
 - Cuckoo & host may or may not be related