WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Monday, October 22, 2018

Search CROPSYS

Browse on keywords: tillage agriculture

Use a different search term

Search results on 10/22/18

5335. Poole, M.L.. 1987. Tillage practices for crop production in winter rainfall areas. p. 24-27.. IN: P.S. Cornish and J.E. Pratley (eds.) Tillage - New Directions in Australian Agriculture..

5622. Ramig, R.E., R.R. Allmaras and R.I. Papendick. 1983. Water conservation: Pacific Northwest. p. 105-124.. IN: H.E. Dregne and H.O. Willis (eds.). Dryland Agriculture. ASA Monograph 23..
Descriptions of tillage and summer fallow practices in 200-400 mm/yr precip. zones. Covers: fall, spring, summer tillages for summer fallow; weed control; time of planting. Also descriptions of conservation tillage practices in fallow such as stubble mulching, chemical fallow. Annual cropping is included and sections cover moldboard plowing, fall chiseling, cloddy seedbeds, no-till, slot mulching. T: precipitation and soil water storage for 3 tillages. Soil water evaporation rates.

6929. Unger, P.W., C.W. Lindwall, D.W. Anderson, and C.A. Campbell. 1989. Mechanized farming systems for sustaining crop production and maintaining soil quality in semiarid regions.. unpublished manuscript, USDA-ARS, Conservation and Production Research Lab, Bushland, TX 79012.
This review paper presents research results primarily from the Northern Plains, Southern Plains, Pacific Northwest, and Australia, addressing issues of soil quality and organic matter, erosion, water storage and utilization, and how these are affected by tillage choices, crop rotations, and other management aspects. Cultivation of semiarid soils generally leads to soil organic matter (SOM) losses of 40-60%, with most loss in the first 20 years. The active fraction of SOM will change faster than the total SOM. The fraction of N that is readily mineralizable decreased more quickly than total N, indicating a reduction in the nutrient-supplying power of the soil over time. Cultivation decreases the proportion of soil aggregates >1 mm. Dry-stable aggregates >0.84 mm are needed to prevent wind erosion. In the Northern Plains, about 60% of the precipitation falls in the May to August growing season. The crop-fallow system here is relatively inefficient at water storage, storing only 20-25% of the precipitation during the fallow period. Crop stubble is crucial to snow trapping and moisture retention. Alternating strips about 5 m. wide of tall and short stubble increased snow depth and density and resulted in 30% more water storage compared to a uniform medium-height stubble. No-till improved yields in many cases by increasing stored moisture, but suitable herbicides are necessary for weed control. Flex cropping in Montana was the most efficient system for using moisture. In the Central Plains, increased evapotranspiration makes ample surface residue very effective. Yields for wheat in a fallow system were more than double those for continuous wheat, making the fallow system more economic. In the Pacific Northwest, major losses result from runoff and from evaporation, due to capillary action in undisturbed surface soils. Water storage efficiencies were 50-75% during the first winter, and 10-50% during the second winter at Pendleton, OR. Surface residues resulted in greater evaporative losses during the summer. To control erosion, innovations such as the slot mulch system, the paraplow, and basin pitters (dammer-diker) have been used. The paper has an excellent list of references on dryland cropping.

9402. Henderson, D.W.. 1979. Soil management in semiarid environments. p. 252-307.. IN: Agriculture in SemiArid Environments. Ecological Studies Volume No. 34, Springer-Verlag Publ.,.
To assess the impact of soil management in a meaningful way and in terms that can be applied in a variety of situations is nearly impossible with existing information. There are strong limitations to the impact of tillage and other soil management practices on crop production, especially under semiarid and arid conditions. Semiarid agriculture, limited as it is by water, economically cannot support intensive or costly practices. Relatively sparse growth frequently provides minimal levels of crop residue to be utilized in various ways. Economic tillage operations generally are relatively shallow, especially in developing areas with little mechanization, and therefore affect only a very small portion of the total root zone depth.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us