WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Thursday, July 19, 2018


Browse on keywords: organic matter soil structure

Use a different search term

Search results on 07/19/18

690. Bear, F.E.. 1931. Soil management.. J. Wiley, N.Y..
A fairly complete text on soil management - fertility, tillage, organic matter, fertilizers; describes proper plow, moisture content, and depth to improve soil tilth; describes weeds as a potential cover crop; field study in England - free living N fixers input ~44 lb/ac/yr (est.). Azotobacter critical pH = 6.4.

1024. Boyle, M., W. Frankenberger, L. Stolzy. 1989. The influence of organic matter on soil aggregation and water infiltration.. J. Production Agric. 2:290-299.
Describes a conceptual model for soil aggregate formation and stability. Soil organic matter contributes to improvement of soil structure in a number of ways. It enhances microbial action which produces more polysaccharides. Aggregation is the product of such forces as mechanical binding by roots and fungal hyphae, temporary adhesive properties by products of microbial synthesis and decay, and persistent cementing action by resistent humus components. Organic materials that decompose quickly (low C:N) had a rapid but ephemeral effect on soil structure. Plant materials that are more resistant to decomposition are slower but more persistent in changing structure. Soil polysaccharides are more complex and diverse than those derived from plants and microbes. Long-term pastures are ideal for aggregation. Good distribution of OM in soil is achieved from the fine roots of grasses, which can translocate as much as 50% of their photosynthate below ground. Green manuring rarely increases aggregate formation, but may inhibit its destruction. Cereals are similar to perennials in increasing % water stable aggregates formed during vegetative growth, but perennials are superior in maintaining the structure after the growing season. A grass-legume mixture is most effective at maintaining soil aggregation, while cereals and root crops are least effective.

1810. Elliott, E.T.. 1986. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils.. Soil Sci. Soc. Am. J., vol.50, p. 627.
Native sod soil had the same general structural characteristics as cultivated soil but the macroaggregates were more stable. The macroaggregate-microaggregate conceptual model is applied to help explain accumulation of soil organic matter under native conditions and its loss upon cultivation. Losses of organic C and N correlated with the reduction of soil structure and increases in erodability.

3080. Tangren, G.V.. 1979. Subsoil bulk densities in some Whitman county small grain fields.. M.S. Thesis, Dept. of Agronomy and Soils, WSU, Pullman, WA.

3107. Dormaar, J.F. and C.W. Lindwall. 1989. Chemical differences in dark brown chernozemic Ap horizons under various conservation tillage systems.. Can. J. Soil Sci. 69:481-488.
Soil properties were investigated in two long-term studies: a 19 yr study of till vs. no-till in wheat fallow, and a 9 yr study of till vs. no-till with 3 rotations, including continuous cropping. No-till had the predominant influence on improving various soil physical and microbial properties. There was little difference in continuous cropping versus wheat-fallow, with tillage. The study compared soil from the entire plow depth, and concluded that 19 yr was long enough for the entire Ap horizon to benefit from no-till. No-till in both studies led to 40% of the dry aggregates being >0.84 mm. Dehydrogenase and phosphatase activities were twice as high under no-till as under cultivatiion. No-till also led to the largest monosaccharide accumulation in the soil.

4176. McCalla, T.M.. 1945. Influence of microorganisms and some organic substances on soil structure.. Soil Sci., 59(4):287-297.

6001. Russell, J.S. and C.H. Williams. 1982. Biogeochemical interactions of carbon, nitrogen, sulfur, and phosphorus in Australian agroecosystems.. IN: J.R. Freney and I.E. Galbally (eds.). Cycling of C,N,S, and P in terrestrial/aquatic ecosystems..
An excellent review article looking at nutrient cycling and gains and losses over time under different agricultural management. Estimates that over 3 million tons C are tied up in soil organic matter additions each year in Australian farmland. SOM levels are higher now than the native condition under systems that have used a legume pasture in the rotation. There was a generally downward trend in the soil C:N over the first 25 yr of OM accumulation. A WWPP rotation slightly increased SOM, while WWWP decreased it slightly, and fallow systems decreased it significantly. Increases in SOM increased the water-stable aggregates in the soil and improved infiltration. Leguminous pastures had an acidifying effect on the underlying soil.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us