WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Friday, June 22, 2018

Search CROPSYS

Browse on keywords: organic matter legume

Use a different search term

Search results on 06/22/18

2918. Idaho Agr. Expt. Sta.. 1950. Annual Report. Id Agr. Expt. Sta. Bull. #280.
T: hay yields, economics

565. Auld, D.L., B.L. Bettis, M.J. Dial and G.A. Murray. 1982. Austrian winter and spring peas as green manure crops in northern Idaho.. Agron. J. 74:1047-1050.
T: organic matter and nitrogen contributions, pea yield.

2607. Hilander, S. (ed.). 1989. Proceedings of AERO's soil building cropping systems conference. December 7-9, Lewistown, MT. AERO, 44 N. Last Chance Gulch #9, Helena, MT 59601.
Summarizes the talks given at the conference. Much information is from Canadian researchers in Saskatchewan who are working on low water use legumes as fallow replacements.

2995. Jacklin, A.W.. 1936. Crop rotations.. USDA-SCS Agronomy - Range Meetings, Pullman, WA #580.
Use legume grass mix in higher rainfall area, grasses in drier areas; rotations are typically 4-7 yr long; perennials can help check the weed problem; subsoiling effect of alfalfa, sweetclover reduces erosion and run-off; grass roots superior in soil aggregation.

5065. Patten, A.G.. 1982. Comparison of nitrogen and phosphorous flows on an organic and conventional farm.. M.S. Thesis, Dept. of Agronomy and Soils, WSU, Pullman, WA.
Two adjacent farms, one organically managed and the other conventionally managed, located in the Palouse region of eastern WA, were studied for 2 years. Soil organic matter, total N, extractable P, and extractable K tended to be higher in the top 30 cm of soil from the organic farm. Mineral nitrogen in the top 30 cm of soil from the conventional farm was higher than or equal to that of the organic farm. Average long-term changes calculated in soil N and P pools resulted in substantial deficits of 44 and 14 kg/ha/yr, respectively, for the organic farm and 23 and 5 kg/ha/yr for the conventional farm. However, nutrients deficits were not reflected in lower soil N and P levels in the plot area tested on the organic farm as compared to the plot area on the conventional farm.

5225. Pieters, A.J.. 1927. Green manuring: principles and practice.. J. Wiley & Sons, N.Y. 356pp..
An excellent early summary of green manuring, in America and around the world; discusses the crucial role of maintaining soil organic matter; describes many green manure plants and their uses wiht various crops in different regions; over 350 references are cited. T: nitrogen value of green manures, biomass.

6248. Sievers, F.J. and H.F. Holtz. 1922. The silt loam soils of eastern Washington and their management.. WA Agr. Expt. Sta. Bull. #166.
A broad treatment of agronomy and soil management during 39 years of cropping 22% N and 35% OM has been lost. T: Comparison of nitrogen content of virgin soil and soil cropped 30 years. Organic carbon in virgin soil and soil cropped 30 years. Straw vs. nitrate development in Palouse silt-loam. High N residue as supplement to straw in nitrate development. Effects of manure on N and C in Palouse silt loam, 18 years of results. Effect of legumes on N and C.

6545. Smith, V.T.. 1948. Green manure crops for Idaho farms.. U. of Idaho Ext. Circ. #105.
Estimates legume N contribution and dollar value: alfalfa - 260 lb N, $40/ac; sweetclover - 160 lb N, $24/ac; clover - 140 lb N, $21/ac; peas/beans - 50lb N, $7/ac; green manure provides nitrogen, improved soil condition, organic matter; results from 10 yr experiment; grow legume seed for cash crop.

8588. U.S.D.A.. 1948. Grass: The Yearbook of Agriculture.. U.S. Govt. Printing Office, Washington, D.C..
This volume is dedicated to a "permanent agriculture" and focuses on the use of perennial grasses and legumes in cropping systems. In discussing the effects of grass on soil, it is stated that organic matter accumulation occurs somewhat slowly during the first few years until a good relationship is reached among the microscopic plants and animals, the higher plants, and the higher animals that live in the soil. Following the establishment of this favorable relationship, the rate of accumulation increases rapidly for many years and then slows again. In medium textured soils of well-balanced mineral composition, it is thought that the maximum content of organic matter will be attained in several hundred years. The book contains many tables listing common and species names, management needs, and characteristics of hundreds of grasses and legumes.

9817. Oveson, M.M. and W.L. Powers. 1931. Modification of soil nitrogen and organic matter by Austrian winter peas.. J. Amer. Soc. Agron. 23:372-387.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us