WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Thursday, January 18, 2018

Search CROPSYS

Browse on keywords: moisture nitrogen

Use a different search term

Search results on 01/18/18

5640. Rasmussen, P.E.. 1976. Nitrogen and sulfur fertilization effects on water relations and growth of non-irrigated white wheat.. OR Agr. Exxpt. Sta. Special Report 459, p. 17.

805. Bezdicek, D.. no date. (STEEP green manure plots). unpublished.
Examined 3 legume green manures (red clover, Austrian winter pea, hairy vetch) and harvested spring pea, with 3 incorporations (plow, disk, chemical kill) and 3 N rates (0, 67, 134 kg N/ha). Prior to tillage, red clover and hairy vetch depleted 3.4 cm/m more moisture than spring pea, and AWP depleted 1.8 cm/m more. Soil residual N was highest under spring pea and lowest under red clover. N fixation estimates ranged from 76 for spring pea to 114 for AWP. Winter wheat yield was highest following red clover that had been plowed or disked. Chemical kill appeared to inhibit wheat yield, and N fertilizer could not overcome this depression. Yields after AWP were lower than red clover but higher than spring peas. Recovery of pea and wheat residue N ranged from 7-10% by a following wheat crop. Overseeding of red clover in a spring cereal was successful. T: residual moisture, N; yield response to the various treatments; recovery of N.

816. Bezdicek, D.. no date. (Influence of residual soil N on N2 fixation; N2 fixation of chickpeas). unpublished.
High levels of residual soil N decreased N2 fixation. There was a negative correlation between the fraction of plant N derived from N2 fixation and total mineralizable N and KCl extractable N. N2 fixation was reduced by about 2.8 kg/ha for each kg/ha of available soil N. Seed yield response from inoculation ranged from 5-70% and was negatively correlated with available soil N. Residual soil moisture in July was greatestfor large seeded legumes > forage legumes > winter wheat. T: N fixation in chickpeas.

826. Bezdicek, D. and R. Lockerman. no date. Crop rotation and the response of cereal crops to nitrogen in the PNW. unpublished.
Experiments conducted at Pullman, WA and Bozeman, MT. Year 1 - legumes (rainfall -Pullman 500 mm, Bozeman 480 mm). Year 2 -Pullman winter wheat + N (rainfall 350 mm); Bozeman barley + N (rainfall 200 mm). Compared fababean, pea, lentil, chickpea, fallow at both locations. Pullman legumes were used as green manure, Bozeman legumes were harvested for seed. N fertilizer equivalents ranged from 30-86 kg/ha N at Pullman (fallow = 125) and from 27-81 kg/ha N at Bozeman (fallow = 53). All cereals responded to added N, although less so at Pullman. More N was removed in seed than was fixed. Seed legumes appeared to fix 50-100 kg/ha N. The rotation effect was more significant at Pullman. T: cereal yields; fertilizer N equivalent; moisture depletion.

877. Black, A.L. and F.H. Siddoway. 1977. Winter wheat recropping on dryland as affected by stubble height and nitrogen fertilization.. Soil Sci. Soc. Am. 41:1186-1190.

969. Bolton, F.E. and S. Aktan. 1978. Effects of different levels of fallow moisture on the amount and distribution of nitrate-N in the soil profile.. Columbia Basin Agr. Res. Sta. Progress Report, p.27.
Effects of different levels of fallow moisture on the amount and distribution of nitrate-N in the soil profile.

1608. Doneen, L.D.. 1934. Nitrogen in relation to composition, growth and yield of wheat.. WA Agr. Expt. Sta. Bull. #296.
On soil with adequate N, adding sodium nitrate retarded wheat growth. The carbohydrate - N ratio of plant tissue was not affected by fertilizer treatment or variety. Under extreme conditions (e.g. variations in N or moisture) there were considerable differences in varietal adaptations. The addition of N after normal tillering caused production of new tillers and increased yields. Fall fertilization led to higher water use and spring moisture deficit. T: many tables. e.g.: Composition of total sugar, non-coagulate nitrogen, amino N, and nitrate on wheat grown under various soil treatments. Yield of grain and straw of wheat treated with sodium N. N removed from soil by grain and straw of wheat treated with different amounts of sodium N/ac. Yield of grain and straw of wheat treated with 500 lb. sodium N/ac.

3589. Kirby, E.M.. 1987. Soil moisture depletion and wheat yield response from annual legumes in the Pacific Northwest. M.S. Thesis, Dept. of Agronomy and Soils, WSU, Pullman, WA.
Legumes included chickpea, spring pea, lentil, fababean, sweetclover, rose clover, black medic, barrel medic. Sweetclover depleted more soil moisture than other legumes. Wheat yield increased following legumes relative to that after barley. Highest yield followed legume green manure with additional fertilizer N. Grain yields were similar for fallow, lentil, pea, chickpea, and fababean. T: soil moisture depletion; yield, N content of soil and grain.

3652. Kmoch, H.G., R.E. Ramig, R.L. Fox, and F.E. Koehler. 1957. Root development of winter wheat as influenced by soil moisture and nitrogen fertilization.. Agronomy J. 49:20-25.
Although there was little top growth in November, root development was extensive for all moisture treatments. Roots which developed under less favorable moisture conditions were finer and had more and longer branches. April samples revealed that the primary root system was in the process of decay. Living roots were generally confined to regions of moist soil. Total weight of roots was highest where nitrogen had been applied. June samples revealed roots to a depth of 13 feet where moisture conditions were favorable. There was evidence of moisture depletion to a depth of 8'. N fertilizer increased root weights and moisture utilization at all moisture levels.

3865. Leggett, G.E.. 1959. Relationships between wheat yield, available moisture and available nitrogen in eastern Washington dryland areas.. WA Agr. Expt. Sta. Bull. #609.
The purpose of this work is to demonstrate the relationships which exist between (1) available moisture and wheat yield and (2) available nitrogen and wheat yield. Using these relationships, it is possible to calculate the amount of fertilizer nitrogen necessary to obtain maximum wheat yield if the supply of available nitrogen in the soil and the amount of moisture available for the crop can be estimated. The results of 90 fertility experiments conducted on dryland wheat in eastern Washington during the period 1953-1957 were used to determine the relationship between wheat yield and available moisture. The results of 62 experiements were used to determine the relationship between wheat yields and available nitrogen. It is possible to calculate nitrogen fertilize recommendations from the results of soil tests for nitrate-nitrogen and available soil moisture by use of these relationships.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us