WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Monday, February 18, 2019

Search CROPSYS

Browse on keywords: moisture OR fallow

Use a different search term

Search results on 02/18/19

3240. Widtsoe, J.A.. 1908. The storage of winter precipitation in soils.. Utah Agr. Expt. Sta. Bulletin 104, Utah State Univ., Logan, UT.
The storage of winter precipitation was compared between an irrigated farm and six non-irrigated farms in Utah, to determine what proportion of winter precipitation is actually stored in the soil. In the top eight feet, average maximum amounts of winter precipitation stored for five years on an irrigated farm was 82% and for three years on non-irrigated farms the winter precipitation stored was 62%. It was concluded that enough water for dryland farming will be stored in the soils when fallowing is practiced every other summer.

5558. Ramig, R.E. and L.G. Ekin. 1984. Effect of stubble management in a wheat-fallow rotation on water conservation and storage in eastern Oregon.. OR Agr. Expt. Sta. Special Report 713, p. 30-33.

5585. Ramig, R.E. and L.G. Ekin. 1987. Fallow systems for semiarid eastern Oregon and Washington.. OR Agr. Expt. Sta. Special Report 797, p.34.

9827. Merrill, L.M.. 1910. A report of seven years' investigation of dry farming methods.. Utah Agr. Expt. Sta. Bulletin 112, Utah State Univ., Logan, UT.
Bulletin 112 presents the results of a seven-year dryland farming study that was conducted on six farms, in six counties of Utah. The average annual rainfall over all locations during the study was 14.80 inches. The study looked at time and depth of plowing, time and depth of seeding, fallow vs. continual cropping, and crop varieties. Fall plowing, to a depth of 10 to 18 inches, produced greatest yields. Planting seed in the fall, at a shallow depth of 1 and 1/2 inches, also produced greatest yields. Annual summer fallow was found necessary for assurance of highest yields. It was also concluded that the wheat straw should be plowed under to enhance the water retaining capacity of the soil. For the initiation and set-up of this experiment, see Bulletin 91 by John A. Widtsoe and Lewis A. Merrill.

9837. Widtsoe, J.A. and L.A. Merrill. 1905. Arid farming in Utah.. Utah Agr. Expt. Sta. Bulletin 91, Utah State Univ., Logan, UT.
This bulletin covers the initiation, set-up and first year results of a seven-year dryland farming experiment in Utah. The experiment was conducted on six farms from six low rainfall counties. It was felt that the great depth of the Utah soils would make it possible for a large quantity of water to be stored in them. However, they also realized that the greatest problem would be to get as much of the rainfall to soak into the soil and not run off. After one year, the preliminary conclusions were that subsoiling favored storage and retention of water, fall plowing resulted in greater amounts of stored water and that summer fallowing every second or third year made larger amounts of water available to the next crop. For the results at the conclusion of this seven-year study, see Bulletin 112 by Lewis A. Merrill.

10128. Greb, B.W., D.E. Smika and A.L. Black. 1967. Effect of straw mulch rates on soil water storage during summer fallow in the Great Plains.. Soil Sci. Soc. Amer. Proc. 31:556-559..
A soil water storage experiment was conducted in the Great Plains by tilling in known amounts of wheat straw. Net gains in soil water storage during fallow varied from 1.0 to 4.3 cm at Sydney, MT, from 2.1 to 4.1 cm at Akron, CO, and from 3.1 to 3.3 cm at North Platte, NE. Average amounts of straw at each site were 2,600, 3,800, and 6,000 kg/ha, respectively. The soil water gains were primarily during the spring months of the 14-month fallow season. The water gained by straw mulches tended to improve the soil water content throughout the soil profile.

10245. Ramig, R.E. and L.G. Ekin. 1991. When do we store water with fallow?. 1991 Columbia Basin Agricultural Research, Special Report 879, OR Agr. Expt. Sta., Corvallis.
Water storage was monitored at Pendleton (16" precip.) and Moro (11" precip.), Oregon from 1978-1984. Storage percentages for the fallow winter, fallow summer, and crop winter were 75, -19, and 54 %, respectively. Significantly less water was stored during the fallow winter in both rainfall zones where the wheat stubble had been burned in the fall. Differences in water conservation and storage among other treatments (spring plow, fall flail, fall disk, and spring sweep) were not significant at both locations. Total water storage for the 18-month crop-fallow cycle was 37 % at Moro and 33% at Pendleton. The best opportunity to improve water conservation and storage in this climate appears to be during the crop winter when only 40-54% of the precipitation was stored.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us