WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Thursday, March 22, 2018


Browse on keywords: legume nitrogen pea

Use a different search term

Search results on 03/22/18

816. Bezdicek, D.. no date. (Influence of residual soil N on N2 fixation; N2 fixation of chickpeas). unpublished.
High levels of residual soil N decreased N2 fixation. There was a negative correlation between the fraction of plant N derived from N2 fixation and total mineralizable N and KCl extractable N. N2 fixation was reduced by about 2.8 kg/ha for each kg/ha of available soil N. Seed yield response from inoculation ranged from 5-70% and was negatively correlated with available soil N. Residual soil moisture in July was greatestfor large seeded legumes > forage legumes > winter wheat. T: N fixation in chickpeas.

3935. Mahler, R.L., D.F. Bezdicek, and R. Witters. 1979. Influence of slope position on nitrogen fixation and yield of dry peas.. Agronomy J. 71:348-351.
Total seasonal N2 fixation estimates: bottomland - 69; south slope - 22; ridgetop - 17 kg N/ha. Pea yields were 2100 kg/ha for the bottomland and 480 kg/ha for the ridgetop, and were related to soil moisture depletion of 22 cm and 9 cm respectively. Greater plant N and DM were obtained in the greenhouse when peas were inoculated with Rhizobium isolates from the north slope when compared to other isolates. T: soil water depletion

3955. Mahler, R.L. and D.L. Auld. 1989. Evaluation of the green manure potential of Austrian winter peas in northern Idaho.. Agron. J. 81:258-264.
Austrian winter peas were evaluated as a green manure (GM) or seed pea (SP) crop, along with soil N levels, and subsequent yields of winter wheat (WW) and spring barley (SB). Four rotations were tested: GM-WW-SB; SP-WW-SB; SB-WW-SP; SF-WW-SB. Average N fertilizer equivalent values of 94, 75, and 68 kg/ha were provided by GM, SP, and SF (fallow) respectively, to the following wheat crop. Yield differences due to crop rotation or N fertilization rate were not observed in the third year of the cropping sequence. Austrian winter peas used as either a GM or SP provided more inorganic N than SF or SB. Although cereal crop yields were comparable, the SP-WW-SB was more profitable than GM-WW-SB or SF-WW-SB, due to the extra harvested crop.

4022. Mahler, R.L.. 1990. Nitrogen database project - final report.. unpublished report for Dryland Cereal/Legume LISA project.
This project had two components: 1) development of a comprehensive database on winter wheat response to nitrogen fertilizer rates; 2) evaluation of the potential of peas, alfalfa, and wheat straw as nitrogen sources for a following wheat crop in rotation. The database study examined winter wheat yield response to 41 nitrogen rates. When soil test N + mineralizable N + fertilizer N ranged from 101 to 175 kg/ha, a requirement of 2.75 lb N per bushel of wheat was calculated. This agrees with the figure calculated by Leggett in the 1950's, indicating that modern varieties have not changed in their basic nitrogen requirement, when nitrogen fertilizer efficiency is assumed to be 50%. At total available N rates greater than 175 kg/ha, the N requirement per bushel of wheat increased dramatically. Low rates did not show a large increase in efficiency on a per bushel basis. At Moscow, N fertilizer application rates less than 95 kg/ha resulted in greater than 50% N use efficiency. Efficiency declined rapidly at rates above this. The green manure study compared alfalfa, pea, and green wheat straw residues applied at 1, 2, and 3 mt/ha. In general, higher rates of pea and alfalfa resulted in higher wheat yields. The highest yields were with the high rate of pea residue. It was more effective than alfalfa residue, probably due to faster decomposition. Alfalfa provided more N per ton of residue (31 kg/mt) than the peas (29 kg/mt), while straw added 19 kg/mt.

7662. Wright, A.T. and E. Coxworth. 1987. Benefits from pulses in the cropping systems of northern Canada. p. 108. IN: J.F. Power (ed.). The role of legumes in conservation tillage systems..
Investigated yield and N response in barley and wheat, 1 and 2 years after pulse crops of fababean, pea, and lentil. Overall yields were higher on fababean and field pea residues than lentils. Soil tests could not attribute yield differences among crop residues to differences in soil N levels at time of seeding. Nitrogen fertilizer equivalents for barley were 105, 85, and 50 lb N/ac for fababean, peas, and lentils. Legume residues influenced barley grain quality. In the second year following pulses, the dry matter yield, grain yield, and N uptake of wheat was 15% higher than in the continuous cereal sequence. Analysis of 3 completed rotation cycles showed that cropping sequences that included pulses were considerably more productive than the continuous cereal sequence in terms of net energy production and economic gross margin to cash costs. Field peas were the most effective first-year crop in terms of net energy production.

7786. Engel, R., L.E. Welty, R. Lockerman, J. Bergman, G. Kushnak, L. Prestbye, and J. Sims. 1987. Annual legumes and cereal grain rotations in Montana.. Montana AgResearch 4(3):1-4.
Montana researchers examined the performance of several grain legumes (dry pea, chickpea, lentil) and their effect on a subsequent barley crop. Dry pea production was the highest. A subsequent barley crop rsponded to added N fertilizer at three out of six sites. Barley yields following legumes were generally equal to or greater than yields following fallow. The annual legumes contributed to soil N and reduced the fertilizer N needed to reach maximum yield by 40-55 lb N/ac when compared to recrop barley. This translated into savings of $10-14/ac for fertilizer N.

7833. Koala, S.. 1985. Effects of N and P fertilizers on the growth, nodulation, and N2 ixation of fababean, green pea, and dry bean.. PhD. Thesis, Dept. of Plant and Soil Sci., Montana St. Univ., Bozeman, MT 59717.

8763. Smith, Larry. n.d.. An evaluation of green manure plowdown systems in Nex Perce County, Idaho.. unpublished results from Cooperative Extension, 1239 Idaho St., Lewiston, ID 83501.
Three growers evaluated the nitrogen benefits and economics of their use of green manure legumes prior to winter wheat production. Two farmers used Austrain winter pea, and one used a sweetclover/red clover mix. Soil tests at various stages of production indicated an increase in available N (0-3') after green manure plowdown of 60-200 lb/ac. The cost of the green manure ranged from $15-27/ac. Clover appeared to produce the most N (191 lb/ac) while winter peas returned 62-116 lb/ac. Landlords did not charge rent for the green manure year, which helped the economic viability. Residual N values indicated that fertilizer N could have been greatly reduced or eliminated for the winter wheat after plowdown. Net returns for the two-year period ranged from $95-215/ac.

8907. Bremer, E., R.J. Rennie, and D.A. Rennie. 1988. Dinitrogen fixation of lentil, field pea and fababean under dryland conditions.. Can. J. Soil Sci. 68:553-562.
N15 was used to study the N-fixation of several grain legumes in Saskatchewan, with all major soil zones represented. Indigenous rhizobia were incapable of supporting adequate levels of N2 fixation at most sites. Inoculation increased total dry matter, total N, and N2 fixation of all legume cultivars tested. Annual rates of N2 fixation were as high as 75, 105, and 160 kg N/ha for lentil, pea, and fababean, respectively on gray and gray-black soils in one year, but declined by an average of 5.3, 7.6, and 10.5 kg N/ha, repsectively, for every cm reduction in moisture use. Fababean fixed the most N under wetter conditions, while pea and lentil fixed the most under drought stress conditions. The amount of N fixed was not significantly correlated with soil nitrate levels in either year, perhaps due to the overriding effects of moisture. Estimates of the % plant N derived from atmospheric fixation ranged from 30-80%, with fababean generally the highest. The % from atmosphere was negatively correlated to soil nitrate for pea and lentil.

9817. Oveson, M.M. and W.L. Powers. 1931. Modification of soil nitrogen and organic matter by Austrian winter peas.. J. Amer. Soc. Agron. 23:372-387.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us