WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Thursday, June 21, 2018

Search CROPSYS

Browse on keywords: legume green manure nitrogen

Use a different search term

Search results on 06/21/18

108. Abernathy, R.H. and W.H. Bohl. 1987. Effects of forage legumes on yield and nitrogen uptake by a succeeding barley crop.. Applied Agr. Res., 2:97-102.
In Wyoming, the effects of spring-planted alfalfa, Austrian winter pea, hairy vetch and sainfoin, with and without a legume forage harvest, on a succeeding barley crop were compared under conditions of high elevation and a short growing season. Uncut hairy vetch, Austrian winter pea, and cut or uncut alfalfa provided barley growth greater than or equal to 100 kg of fertilizer N/ha. Barley following sainfoin performed better than the barley grown with no fertilizer or legume, but did not perform as well as the barley control treatment that received 100 kg of N/ha. Alfalfa performed best of all under these conditions, and provided adequate barley growth even with the removal of 3.7 Mg/ha forage.

602. Badaruddin, M., and D.W. Meyer. 1989. Forage legume effects on soil nitrogen and grain yield, and nitrogen nutrition of wheat.. Agron. J. 81:419-424.
Five forage legumes (annual alfalfa, perennial alfalfa, sweetclover, red clover, and hariy vetch) were evaluated as possible replacements for summerfallow in the northern Great Plains. Hard red spring wheat was grown after all plowdowns, and after wheat, and a fallow check. Legume species were not significantly different in hay yields, and root and crown N content across environments, although alfalfa and sweetclover had 35-83% greater N contents than other species. Soil nitrate N in the spring following legumes was greater than following fertilized wheat, but less than following fallow across environments. Grain yield and N uptake of wheat following forage legumes generally were equal to those following fallow, but greater than those following wheat. These results suggest that including 1-yr forage legumes in crop sequence would be a better option than fallow in the higher moisture areas. T: N content of forage leguems; wheat yields as influenced by previous crop; N efficiency

805. Bezdicek, D.. no date. (STEEP green manure plots). unpublished.
Examined 3 legume green manures (red clover, Austrian winter pea, hairy vetch) and harvested spring pea, with 3 incorporations (plow, disk, chemical kill) and 3 N rates (0, 67, 134 kg N/ha). Prior to tillage, red clover and hairy vetch depleted 3.4 cm/m more moisture than spring pea, and AWP depleted 1.8 cm/m more. Soil residual N was highest under spring pea and lowest under red clover. N fixation estimates ranged from 76 for spring pea to 114 for AWP. Winter wheat yield was highest following red clover that had been plowed or disked. Chemical kill appeared to inhibit wheat yield, and N fertilizer could not overcome this depression. Yields after AWP were lower than red clover but higher than spring peas. Recovery of pea and wheat residue N ranged from 7-10% by a following wheat crop. Overseeding of red clover in a spring cereal was successful. T: residual moisture, N; yield response to the various treatments; recovery of N.

826. Bezdicek, D. and R. Lockerman. no date. Crop rotation and the response of cereal crops to nitrogen in the PNW. unpublished.
Experiments conducted at Pullman, WA and Bozeman, MT. Year 1 - legumes (rainfall -Pullman 500 mm, Bozeman 480 mm). Year 2 -Pullman winter wheat + N (rainfall 350 mm); Bozeman barley + N (rainfall 200 mm). Compared fababean, pea, lentil, chickpea, fallow at both locations. Pullman legumes were used as green manure, Bozeman legumes were harvested for seed. N fertilizer equivalents ranged from 30-86 kg/ha N at Pullman (fallow = 125) and from 27-81 kg/ha N at Bozeman (fallow = 53). All cereals responded to added N, although less so at Pullman. More N was removed in seed than was fixed. Seed legumes appeared to fix 50-100 kg/ha N. The rotation effect was more significant at Pullman. T: cereal yields; fertilizer N equivalent; moisture depletion.

2607. Hilander, S. (ed.). 1989. Proceedings of AERO's soil building cropping systems conference. December 7-9, Lewistown, MT. AERO, 44 N. Last Chance Gulch #9, Helena, MT 59601.
Summarizes the talks given at the conference. Much information is from Canadian researchers in Saskatchewan who are working on low water use legumes as fallow replacements.

3589. Kirby, E.M.. 1987. Soil moisture depletion and wheat yield response from annual legumes in the Pacific Northwest. M.S. Thesis, Dept. of Agronomy and Soils, WSU, Pullman, WA.
Legumes included chickpea, spring pea, lentil, fababean, sweetclover, rose clover, black medic, barrel medic. Sweetclover depleted more soil moisture than other legumes. Wheat yield increased following legumes relative to that after barley. Highest yield followed legume green manure with additional fertilizer N. Grain yields were similar for fallow, lentil, pea, chickpea, and fababean. T: soil moisture depletion; yield, N content of soil and grain.

3816. Ladd, J., J. Oades, and M. Amato. 1981. Distribution and recovery of nitrogen from legume residues decomposing in soils sown to wheat in the field.. Soil Biol. Biochem. 13:251-256.

3955. Mahler, R.L. and D.L. Auld. 1989. Evaluation of the green manure potential of Austrian winter peas in northern Idaho.. Agron. J. 81:258-264.
Austrian winter peas were evaluated as a green manure (GM) or seed pea (SP) crop, along with soil N levels, and subsequent yields of winter wheat (WW) and spring barley (SB). Four rotations were tested: GM-WW-SB; SP-WW-SB; SB-WW-SP; SF-WW-SB. Average N fertilizer equivalent values of 94, 75, and 68 kg/ha were provided by GM, SP, and SF (fallow) respectively, to the following wheat crop. Yield differences due to crop rotation or N fertilization rate were not observed in the third year of the cropping sequence. Austrian winter peas used as either a GM or SP provided more inorganic N than SF or SB. Although cereal crop yields were comparable, the SP-WW-SB was more profitable than GM-WW-SB or SF-WW-SB, due to the extra harvested crop.

4022. Mahler, R.L.. 1990. Nitrogen database project - final report.. unpublished report for Dryland Cereal/Legume LISA project.
This project had two components: 1) development of a comprehensive database on winter wheat response to nitrogen fertilizer rates; 2) evaluation of the potential of peas, alfalfa, and wheat straw as nitrogen sources for a following wheat crop in rotation. The database study examined winter wheat yield response to 41 nitrogen rates. When soil test N + mineralizable N + fertilizer N ranged from 101 to 175 kg/ha, a requirement of 2.75 lb N per bushel of wheat was calculated. This agrees with the figure calculated by Leggett in the 1950's, indicating that modern varieties have not changed in their basic nitrogen requirement, when nitrogen fertilizer efficiency is assumed to be 50%. At total available N rates greater than 175 kg/ha, the N requirement per bushel of wheat increased dramatically. Low rates did not show a large increase in efficiency on a per bushel basis. At Moscow, N fertilizer application rates less than 95 kg/ha resulted in greater than 50% N use efficiency. Efficiency declined rapidly at rates above this. The green manure study compared alfalfa, pea, and green wheat straw residues applied at 1, 2, and 3 mt/ha. In general, higher rates of pea and alfalfa resulted in higher wheat yields. The highest yields were with the high rate of pea residue. It was more effective than alfalfa residue, probably due to faster decomposition. Alfalfa provided more N per ton of residue (31 kg/mt) than the peas (29 kg/mt), while straw added 19 kg/mt.

4201. McCalla, T.M. and J.C. Russel. 1948. Nitrate production as affected by sweetclover residues left on the soil surface.. J. Am. Soc. Agron., 40(5):411-421.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us