WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Wednesday, September 26, 2018

Search CROPSYS

Browse on keywords: fertility wheat winter wheat

Use a different search term

Search results on 09/26/18

2033. Fowler, D.B. and J. Brydon. 1989. No-till winter wheat production on the Canadian Prairies: timing of nitrogen fertilization.. Agron. J. 81:817-825.
Tested the effect of timing of a broadcast application of ammonium sulfate on grain and protein yield and protein concentration. Lower grain yield, grain protein yield and grain protein concentration were attributed to loss of fall applied N in four trials. Increased grain protein concentration was often associated with delayed N availability. Reduced grain and grain protein yield, and increased grain protein concentration were observed for fall and early spring N applications in trials that experienced favorable spring weather followed by a prolonged drought.

2043. Fowler, D.B. and J. Brydon. 1989. No-till winter wheat production on the Canadian prairies: placement of urea and ammonium nitrate fertilizers.. Agron. J. 81:518-524.
A practical snow management system, which utilizes no-till seeding into standing stubble immediately after harvest, has permitted expansion of winter wheat production in western Canada. This study examined grain responses to urea and ammonium nitrate fertilizer banded and broadcast at seeding, or broadcast in the late fall or early spring. A moisture shortage biased the results. Fall banding prior to seeding helped reduce volatilization losses of urea (which were as much as 50%), but presented other problems and did not outperform broadcast ammonium nitrate.

5973. Roth, G.W., R.H. Fox, and H.G. Marshall. 1989. Plant tissue tests for predicting nitrogen fertilizer requirements of winter wheat.. Agron. J. 81:502-507.
Three plant tissue tests for estimating supplemental N for winter wheat were evaluated: stem nitrate concentration, whole-plant N concentration, and crop uptake N. The whole plant test accounted for the most variation in relative yields, had the lowest spatial variability, and appeared to be best suited for the current wheat management system in PA. The stem nitrate test was most sensitive to short-term changes in soil N supply.

8354. Veseth, R.. 1990. Winter wheat nitrogen management in the 18-25 inch precipitation zone.. STEEP Extension Conservation Farming Update, Spring 1990, p. 9-11..
In this rainfall zone, treatments with 25-50% if the N banded below the seed at planting and the remaining N spring broadcast, produced significantly higher yield and N use efficiencies when compared to the average of all other treatments. At the lower precipitation, more N should be fall-applied than in the wetter areas. Banding avoids some of the weed stimulation caused by broadcast N applications.

8402. Gardner, H. and N.R. Goetze. 1980. Winter wheat - non-irrigated Columbia Plateau.. OSU Fertilizer Guide FG54, OSU Extension Service, Corvallis, OR F.
Soil sampling is recommended for 0-2' and 2-6' depths. A table indicating N fertilizer needs is included, to be used with soil test results. Suggestions are also made for P and S.

8412. Pumphrey, F.V. and P.E. Rasmussen. 1982. Winter wheat fertilization in the northeast intermountain region of Oregon.. OSU AES Circular of Information 691, OSU, Corvallis, OR.
Early spring application of N is more effective than preplant. Rates can be reduced up to 50%. Most wheat needs S fertilizer (15-30 lb/ac) if N is added. Most soils supply enough P for high yields. There have not been significant yield responses to potassium or trace elements.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us