WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Tuesday, September 25, 2018

Search CROPSYS

Browse on keywords: fertility wheat yields

Use a different search term

Search results on 09/25/18

3070. Tanaka, D.L. and J.K. Aase. 1989. Influence of topsoil removal and fertilizer application on spring wheat yields.. Soil Sci. Soc. Am. J. 53:228-232.
In 3 of 5 years, soil removal treatments reduced spring wheat yields an average of 9, 28, and 45% for 0.06, 0.12, and 0.18 m soil removal treatments, respectively, over all fertilizer treatments. The data suggest that P was the most limiting nutrient and additions of N fertilizer without P resulted in small yield increases.

3885. Leggett, G.E., H.M. Reisenauer and W.L. Nelson. 1959. Fertilization of dryland wheat in eastern Washington.. WA Agr. Expt. Sta. Bull. #602.
This bulletin presents the results of 5 yrs of experimenting with the fertilization of wheat. During 1953-1957, 112 fertility experiments were conducted on dry land wheat throughout eastern Washington. Nitrogen fertilization significantly increased yields in 92 of the 112 experiments conducted. Whether nitrogen fertilization increased wheat yields depended largely on the amount of moisture available to the crop. Because of the decline in soil organic matter through years of cropping, the amount of available N released by soils is no longer adequate to support high wheat yields. The introduction of high yield varieties and improved tillage has increased yield potential, and this has increased the demand for N. Application rates (lb N/ac): <10" rainfall - 20-40; 10-15" - 20-60; >15" - 30-80. Different types of N fertilizer did not change yields. T: Summary of the effects of N on wheat yields, 1953-57; effect of N on yield from fallow ground.

8675. Dalal, R.C. and R.J. Mayer. 1986. Long-term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. 1. Overall changes in soil properties. Austr. J. Soil Res. 24:265-279.

10070. Mahler, R.. undated. Catena management in northern Idaho.. unpublished handout for Extension agent training.
In northern Idaho, water is often not limiting to crop production. Also, nutrient use efficiency is lower than in drier areas. Where annual precipitation is <17", fall application of all N fertilizer is best. But as rainfall increases, nutrient use efficiency can be increased by applying a greater share of N in the spring. Fertility experiments have shown that growers are probably underfertilizing bottomland positions and overfertilizing slopes for maximum net return from fertilizer. Several questions need to be answered to help improve nutrient efficiency. Is the value 2.7 lb N/bu wheat linear? Research results indicate that only 2.4 lb N/bu is needed at 80-90% of maximum yield. Is residual N used as efficienctly by plants from surface layers versus subsurface layers? What is the best approach to estimating N mineralization rates in a soil? Rates in northern Idaho can vary as much as 100% depending on weather conditions.

10287. Bhatti, A.U., D.J. Mulla, and B.E. Frazier. 1991. Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images.. Remote Sensing Environ. 37:181-191.
Spatial variability of organic carbon, soil P, and wheat yields was measured in eastern Washington using classical statistics and geostatistics. Organic carbon content was estimated from Landsat Thematic Mapper images. Goestatistics revealed strong spatial correlations relative to classical statistics. The spatial patterns were associated with changes in surface organic matter content across the landscape resulting from extensive erosion.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us