WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Tuesday, July 17, 2018

Search CROPSYS

Browse on keywords: fertility soil quality P

Use a different search term

Search results on 07/17/18

1015. Bowren, K.E. (ed.).. 1986. Soil improvement with legumes.. Saskatchewan Agriculture, Soils and Crops Branch.
This excellent publication summarizes research over the past 40 years pertaining to the use of legumes for soil improvement in Saskatchewan. The role of legumes in maintaining soil nitrogen was crucial prior to available fertilizer. But their value extends beyond their nitrogen contribution to the improvement of soil physical properties. One study found the tillage draft requirement to be up to one-third lower where legumes had been a regular part of the rotation. The positive effects of alfalfa were measured for over ten years in a series of wheat crops compared to plots with no alfalfa. Over 17 years, the average grain yield from a wheat-wheat/clover-clover green manure rotation with no fertilizer were 30% higher that a wheat-wheat-fallow rotation with fertilizer. Moisture depletion by legumes is the biggest hurdle to their use in very dry areas. Adequate fertility for the legumes is necessary to maximize their benefit. Use of selected Rhizobium strains can improve nitrogen fixation, especially on acid soils. Several varieties of sweetclover are mentioned with adaptation to forage or green manure use. The booklet has numerous color photos and many data tables and figures.

1688. Douglas, C.L.. 1983. Silicic acid and oxidizable carbon movement in a Walla Walla silt loam.. Ph.D Thesis, Oregon State Univ., Corvallis, OR. 75pp..
This study shows that use of ammonia fertilizers over the past 40 yrs, and particularly anhydrous ammonia in the past 15, has resulted in a more acid plow layer. The decrease in pH has caused soluble silica to leach out of the plow layer and led to cementation of the plow pan layer below 15 cm. The result is reduced water infiltration, increased water runoff and soil erosion, and increased soil water evaporation. Corrective applications of hydrated lime are explored. T: Mean silicic acid concentration in leachates from 15 cm soil layers as affected by long term N treatments. Long-term N and residue management effects on soluble carbon movement in four 15 cm layers. Soil pH and carbon addition effects on silicic acid concentration and transfer from the 0-15 cm layer.

1854. Emmond, G.S.. 1971. Effect of rotations, tillage treatment and fertilizers on the aggregation of a clay soil.. Canadian J. Soil Science, 51:235-241.
Soil aggregation was lowest in a wheat-fallow rotation and increased in other fallow-grain rotations with the second, third and forth crops after the fallow year. The best aggregation was under continuous wheat. Rotations containing hay crops increased aggregation significantly. Tillage treatments affected soil aggregation in the following order: green manure crop plowed under> cultivated with trash cover> crop residue plowed under > cultivated with crop residue burned off = crop residue disked in. Fertilizer (11-48-0) increased aggregation except where crop residue had been removed. Barn manure increased soil aggregation. T: Effect of barn manure and crop sequence on soil aggregation. Effect of 5 tillage treatments on soil aggregation.

4377. McKay, H.C. and W.A. Moss. 1949. High protein wheat with conservation farming.. U. of Idaho Extension Bull. #181.
Emphasize need for legume - grass rotation to maintain soil productivity. Suggest a 7 yr sweet clover rotation or a 9 yr alfalfa rotation. Yellow sweet clover plus mountain bromegrass or slender wheatgrass; Ladak alfalfa plus smooth brome and big bluegrass (high rainfall) or crested wheatgrass (low rainfall); early spring seeding recommended without nurse crop; methods of establishment, plow sweetclover at 12-22" height; use sweetclover as a surface mulch to prevent erosion. T: soil moisture and sweetclover growth; wheat after sweetclover; yield and protein.

4807. Nelson, A.L.. 1950. Methods of tillage for winter wheat.. WY Agr. Expt. Sta. Bulletin 300.
Fallow/winter wheat production decreased soil N by 33% in the top 6" over 35 years. Continuous cropping lost 24% of the soil N. Crop rotations using green manure every 4th year did not decrease the loss of soil N. Average winter wheat yields (bu/ac) over 34 years for 3 rotations were: oats/rye(GM)/winter wheat/corn - 12.9; oats/peas(GM)/winter wheat/corn - 12.7; fallow/winter wheat - 13.7; oats/corn/winter wheat/rye - 13.2; oats/corn/winter wheat/peas - 14.1; oats/corn/winter wheat/fallow - 13.2. It was observed that green manure took years to break down. Tillage with an eccentric one-way increased winter wheat yields 2 bu/ac over 10 years compared to plowing. The eccentric one-way conserved moisture. Continuous cropping resulted in winter wheat yields 55% of biennial yields following fallow. Soil moisture was 3-4% lower in October after continuous cropping versus fallow.

5649. Rasmussen, P.E. and C.R. Rohde. 1988. Long-term tillage and nitrogen fertilization effects on organic nitrogen and carbon in a semi-arid soil.. Soil Sci. Soc. Am. J. 52(4): 1114-1117.
A 44 year experiment of wheat-fallow rotations in the Pacific Northwest. Main treatments were 3 primary tillage systems, one conventional and two stubble mulch. Subplots were 6 different N treatments. Organic N and C in the top 75mm of soil were 26 and 32% greater in the stubble mulch systems than the conventional system. Stubble mulch plots contained 245 kg more N/ha than the conventional plots. In all treatments 18% of applied N was incorporated into the organic fraction. N transformations were the same for stubble and conventional treatments. T: Organic N and C at different depths as effected by tillage method and N fertilization. Tillage and N effects on organic N in upper 225 mm of soil. Tillage and N effects on organic C in upper 225 mm of soil.

5659. Rasmussen, P.E. and C.R. Rohde. 1989. Soil acidification from ammonium-nitrogen fertilization in moldboard plow and stubble-mulch wheat-fallow tillage.. Soil Sci. Soc. Am. J. 53(1):119-122..
Change in soil pH in relation to applied N was determined for one conventional and two stubble-mulch tillage treatments. Acidifying effects were concentrated in the top 7 cm of the stubble-mulched soil, but distributed to 22 cm or more with moldboard plowing. The rate of pH decline was greater for moldboard plowing than stubble-mulching. T: Long-term N fertilization effect on pH in the upper 45 cm of soil under different tillage systems. Linear relationship between applied N and soil pH, as affected by tillage.

5684. Rasmussen, P.E. and R.R. Allmaras. 1986. Sulfur fertilization effects on winter wheat yield and extractable sulfur in semiarid soils.. Agronomy J. 78: 421-425.
Wheat yield in response to S was affected by yield level, intesity of cropping, and S accumulation in calcic horizons. At noncalcareous wheat-fallow sites with little S accumulation within 1.8 m of the surface, progressive downward movement of S occurred over 4 yrs. At an annual crop site with a calcic horizon, substantial yield responses to residual S occurred 25 yrs after application of 270-1570 kg S/ha. The highest fertilizer use efficiency was by fertilizing every 2nd crop with 14 kg S/ha when soil tests and yield data indicate a S deficiency. T: S and N fertilization effects on grain yield and S uptake by winter wheat. Extractable S in the upper 0.6 m of soil 2 and 4 yrs after S application. Cumulative plant uptake and extractable S in soil 1 and 4 yrs after S application. Extractable S in soil profile 25 yrs after S application ceased. Wheat yield response 1960-75, as affected by S applied between 1931-50.

5744. Rasmussen, P.E., R.E. Ramig, R.R. Allmaras and C.M. Smith.. 1975. Nitrogen - sulfur relations in soft white winter wheat. II. Initial and residual effects of sulfur application on nutrient uptake and N/S ratio.. Agronomy J. 67(2):224-228.
This study determined S and N uptake and distribution in soft white winter wheat fertilized with S in combination with deficient, optimum, and excessive N. Residual uptake from 17, 34, and 68 kg of applied S/ha was evaluated in 3 subsequent wheat crops receiving optimum N fertilization. S uptake and concentration in the first crop was proportional to the rate applied, but accumulated primarily in vegetative tissue when present in excess of the amount required for grain protein. Uptake from residual S was lower than from applied S. Grain yield responses to S were poorly correlated with S concentration or N/S ratios in tissue, because of inconsistancy of S accumulation in plant parts and the dominant effect of N on yield. T: Effect of N and S fertilization on S concentration and uptake at 3 stages of growth in a first wheat crop. Effect of residual S on grain yield and S concentration in grain and straw of second, third, and fourth crops. Relationship between S concentration in mature whole plants and grain yield receiving optimum N fertilization.

6638. Steel, S.. 1990. Your tiniest livestock.. Farm Journal (mid-January).
Discusses the importance of the microbial population for a number of factors. Available P levels have increased in low input systems years after the last commercial P was added, probably due to microbial action. The microbial biomass from a LISA system had a higher proportion of N than that from a conventional system. Microbes improve soil structure. A marked increase in infiltration was observed after only one application of manure. John Doran found 10-26% more microbes on manured plots than unmanured. Also, there were more microbes in the top few inches of land planted to oats and clover than to corn or soybeans. This is mostly due to carbon levels and C:N ratios.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us