WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Sunday, January 21, 2018

Search CROPSYS

Browse on keywords: fertility no-till barley

Use a different search term

Search results on 01/21/18

961. Bolton, F.E.. 1988. Liquid starter fertilizers on winter wheat and barley in no-till plantings.. Columbia Basin Agr. Res. Sta. Special Report #827, p.33.
Liquid starter fertilizer on winter wheat and barley in no-till plantings.

3259. Pan, W.L., B.A. TIllman, and S.E. Ullrich. 1991. Ammonium and nitrate uptake by barley genotypes in diurnally fluctuating root temperatures simulating till and no-till conditions.. Plant Soil 135:1-8.
The morphological development and N uptake patterns of European and PNW spring barley cultivars were compared under conditions simulating soil temperature differences between till and no-till conditions observed during early spring in eastern WA. All genotypes absorbed more ammonium than nitrate. Overall, the data indicate that lower maximum daytime temperatures of the soil layer likely account for a significant portion of the growth reductions and lower N uptake observed in no-till systems.

10406. Pan, W.L. and A.G. Hopkins. 1991. Plant development, and N and P use of winter barley. II. Responses to tillage and N management across eroded toposequences.. Plant Soil 135:21-29.
Winter barley was grown at three landscape positions of a representative toposequence in the Palouse region. Direct drilling (no-till) into crop residues increased yields by 16% over conventional tillage at an eroded ridgetop position, despite early season growth inhibition. Tillage system had no effect on grain production at other landscape positions that featured higher overall yields. Short-term benefits of no-till systems may be most evident at slope positions where water use is most limited.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us