WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Friday, December 14, 2018

Search CROPSYS

Browse on keywords: fertility no-till grain

Use a different search term

Search results on 12/14/18

2033. Fowler, D.B. and J. Brydon. 1989. No-till winter wheat production on the Canadian Prairies: timing of nitrogen fertilization.. Agron. J. 81:817-825.
Tested the effect of timing of a broadcast application of ammonium sulfate on grain and protein yield and protein concentration. Lower grain yield, grain protein yield and grain protein concentration were attributed to loss of fall applied N in four trials. Increased grain protein concentration was often associated with delayed N availability. Reduced grain and grain protein yield, and increased grain protein concentration were observed for fall and early spring N applications in trials that experienced favorable spring weather followed by a prolonged drought.

2756. Huggins, D.R., W.L. Pan, and J.L. Smith. 1989. Improving yield, percent protein, and N use efficiency of no-till hard red spring wheat through crop rotation and fall N fertilization.. Proceedings, 40th Far West Fertilizer Conference,.
In a field experiment near Pullman, WA, all fall and split fall-spring N applications significantly increased percent protein and N uptake efficiency as compared to all spring applications, while yields were unaffected. Protein increase was attributed to enhanced late season uptake, due to better positional availability of deep soil N. In another experiment, yield of hard red spring wheat was 10% greater when no-tilled into Austrian winter pea stubble (for seed) as compared to winter wheat stubble, while grain N and percent protein were not affected. The difference in yield was not eliminated by optimized N rates, indicating other rotation effects.

5577. Ramig, R.E. and L.G. Ekin. 1985. Fertilizer response in 1984: No-till annual cropping of small grains.. OR Agr. Expt. Sta. Special Report 738, p.27-32.
Fertilizer experiments with no-till annual cropped small grains were conducted in 1983-84 near Pilot Rock and Kent, Oregon. Summary and recommendations: 1) No-till annual cropping is feasible on shallow (<36 in deep) soils that usually fill with water the first winter after grain harvest.; 2) Uniform distribution of chaff and straw when harvesting is important; 3) Proper herbicides are needed; 4) Use a drill capable of seeding through standing crop residue, banding fertilizer 2-3 inches below the seed; 5) The optimum fertilizer rate is usually 150% of the optimum rate for grain after fallow; 6) Banding fertilizer 2 or 3 inches below the seed is best. T: many, e.g. Variety responses to N, P, K, and S.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us