WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Saturday, March 24, 2018


Browse on keywords: fertility nitrogen fertilizer

Use a different search term

Search results on 03/24/18

272. Allmaras, R.R., K. Ward, P.E. Rasmussen and C.R. Rohde.. 1978. Soil acidification from long-term use of ammonium-type nitrogen fertilizers.. OR Agr. Expt. Sta. Progress Report Misc. #78-4, p.55-58.
Long term use of ammonium fertilizers has reduced pH in the plowlayer in proportion to the rate of application; no noticeable difference in 12-18 zone of soil; about 50% of the applied fertilizer was lost, perhaps by denitrification; 1 T of pure limestone raised the pH by 0.5 unit; liming to pH 6.2 improved pea growth and increased soil water storage; potential increase infiltration and reduce erosion with liming. T: pH x depth, N rate, lime requirement.

915. Boawn, L.C., C.E. Nelson, F.G. Viets, and C.L. Crawford. 1960. Nitrogen carrier and nitrogen rate influence on soil properties and nutrient uptake by crops.. WA Agr. Expt. Sta. Bulletin 614.
Irrigated soils near Prosser. Native soil. Soil pH dropped from 7.4 to 6.0 (0-8") with ammonium sulfate at 160 N/ac. Effect of ammonium nitrate was less, while calcium nitrate had no effect on pH. Fertilizer N recovery was 75-85%. N application increased Mn uptake, but no trends for other elements.

1077. Broadbent, F.E. and F.J. Stevenson. 1966. Organic matter interactions.. Agricultural anhydrous ammonia: technology and use. p. 169-197..

1987. Fireman, M.. 1945. Effect of sodium nitrate and ammonium fertilizers on the permeability of western soils.. .
Experiments on 51 western soils. Sodium nitrate reduced permeability 41-86%. Ammonium nitrate and ammonium sulfate also decreased permeability, but to a lesser extent. T; Permeability tests; variations in permeability.

2043. Fowler, D.B. and J. Brydon. 1989. No-till winter wheat production on the Canadian prairies: placement of urea and ammonium nitrate fertilizers.. Agron. J. 81:518-524.
A practical snow management system, which utilizes no-till seeding into standing stubble immediately after harvest, has permitted expansion of winter wheat production in western Canada. This study examined grain responses to urea and ammonium nitrate fertilizer banded and broadcast at seeding, or broadcast in the late fall or early spring. A moisture shortage biased the results. Fall banding prior to seeding helped reduce volatilization losses of urea (which were as much as 50%), but presented other problems and did not outperform broadcast ammonium nitrate.

2756. Huggins, D.R., W.L. Pan, and J.L. Smith. 1989. Improving yield, percent protein, and N use efficiency of no-till hard red spring wheat through crop rotation and fall N fertilization.. Proceedings, 40th Far West Fertilizer Conference,.
In a field experiment near Pullman, WA, all fall and split fall-spring N applications significantly increased percent protein and N uptake efficiency as compared to all spring applications, while yields were unaffected. Protein increase was attributed to enhanced late season uptake, due to better positional availability of deep soil N. In another experiment, yield of hard red spring wheat was 10% greater when no-tilled into Austrian winter pea stubble (for seed) as compared to winter wheat stubble, while grain N and percent protein were not affected. The difference in yield was not eliminated by optimized N rates, indicating other rotation effects.

3652. Kmoch, H.G., R.E. Ramig, R.L. Fox, and F.E. Koehler. 1957. Root development of winter wheat as influenced by soil moisture and nitrogen fertilization.. Agronomy J. 49:20-25.
Although there was little top growth in November, root development was extensive for all moisture treatments. Roots which developed under less favorable moisture conditions were finer and had more and longer branches. April samples revealed that the primary root system was in the process of decay. Living roots were generally confined to regions of moist soil. Total weight of roots was highest where nitrogen had been applied. June samples revealed roots to a depth of 13 feet where moisture conditions were favorable. There was evidence of moisture depletion to a depth of 8'. N fertilizer increased root weights and moisture utilization at all moisture levels.

3865. Leggett, G.E.. 1959. Relationships between wheat yield, available moisture and available nitrogen in eastern Washington dryland areas.. WA Agr. Expt. Sta. Bull. #609.
The purpose of this work is to demonstrate the relationships which exist between (1) available moisture and wheat yield and (2) available nitrogen and wheat yield. Using these relationships, it is possible to calculate the amount of fertilizer nitrogen necessary to obtain maximum wheat yield if the supply of available nitrogen in the soil and the amount of moisture available for the crop can be estimated. The results of 90 fertility experiments conducted on dryland wheat in eastern Washington during the period 1953-1957 were used to determine the relationship between wheat yield and available moisture. The results of 62 experiements were used to determine the relationship between wheat yields and available nitrogen. It is possible to calculate nitrogen fertilize recommendations from the results of soil tests for nitrate-nitrogen and available soil moisture by use of these relationships.

3875. Leggett, G.E. and W.L. Nelson. 1960. Wheat production as influenced by cropping sequence and nitrogen fertilization.. WA Agr. Expt. Sta. Bull. #608.
The average wheat yields resulting from annual cropping with optimum nitrogen fertilization were 13 bu/ac at Ritzville, 23 and Harrington and 29 at Dusty. The yields at Ritzville were too low for this practice to compete economically with the summer-fallow system. The average yields were high enough at Harrington and Dusty for this cropping system to be seriously considered. At Dusty annual cropping resulted in a yearly average yield of 6 bu/ac more than was obtained on fallowed ground. The yield of wheat following Austrian winter peas as a green manure crop at Dusty was greater than that obtained after alfalfa or sweetclover. Soil analysis revealed that nitrogen fertilization resulted in a carryover of nitrate-nitrogen for subsequent crops. This was especially notable under annual cropping and with high rates of application on summer-fallow. The protein content of the wheat was increased markedly by nitrogen fertilization. T: Nitrate-nitrogen in the soil before fertilization and the available soil moisture used by wheat as influenced by nitrogen fertilization cropping practice, Dusty. Yields of barley and wheat as influenced by alfalfa, sweetclover, and Austrian winter peas as green manure crops.

4002. Mahler, R.L., A.R. Halvorson and F.E. Koehler. 1985. Long-term acidification of farmland in northern Idaho and eastern. Comm. Soil Sci. Plant Anal. 16:83-95.
Soil acidification from N fertilizer first noticed in 1960's; has accelerated since then; critical levels for crops: alfalfa 5.6, wheat 5.2, peas and lentils 5.4; current wheat varieties relatively acid intolerant; liming needed to grow alfalfa on 45% of northern ID fields; acidification may be shifting weed pressures, encouraging diseases, decreasing availability of P and Mo. T: map of pH changes, N fertilizer use.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us