WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Friday, April 27, 2018


Browse on keywords: fertility moisture OR

Use a different search term

Search results on 04/27/18

2232. Grabe, D., F. Bolton, C. Garbacik, and J. DeNoma. 1989. Response of winter wheat to yield-enhancing agents.. Columbia Basin Agr. Research Spec. Report 840.
Tested a number of non-traditional products, including YEA!, Amplify-D, Car-Dak, Bio-Mag seed treat, seed moisturing. YEA! had a small but significant effect on seedling growth, while the other products did not. No yield responses were observed. Seed moisturizing with various pressure treatments did not appear to have any field benefits.

5640. Rasmussen, P.E.. 1976. Nitrogen and sulfur fertilization effects on water relations and growth of non-irrigated white wheat.. OR Agr. Exxpt. Sta. Special Report 459, p. 17.

969. Bolton, F.E. and S. Aktan. 1978. Effects of different levels of fallow moisture on the amount and distribution of nitrate-N in the soil profile.. Columbia Basin Agr. Res. Sta. Progress Report, p.27.
Effects of different levels of fallow moisture on the amount and distribution of nitrate-N in the soil profile.

3865. Leggett, G.E.. 1959. Relationships between wheat yield, available moisture and available nitrogen in eastern Washington dryland areas.. WA Agr. Expt. Sta. Bull. #609.
The purpose of this work is to demonstrate the relationships which exist between (1) available moisture and wheat yield and (2) available nitrogen and wheat yield. Using these relationships, it is possible to calculate the amount of fertilizer nitrogen necessary to obtain maximum wheat yield if the supply of available nitrogen in the soil and the amount of moisture available for the crop can be estimated. The results of 90 fertility experiments conducted on dryland wheat in eastern Washington during the period 1953-1957 were used to determine the relationship between wheat yield and available moisture. The results of 62 experiements were used to determine the relationship between wheat yields and available nitrogen. It is possible to calculate nitrogen fertilize recommendations from the results of soil tests for nitrate-nitrogen and available soil moisture by use of these relationships.

5632. Ramig, R.E., P.E. Rassmussen, R.R. Allmaras and C.M. Smith.. 1975. Nitrogen - sulfur relations in soft winter wheat. I. Yield response to fertilizer and residual sulfur.. Agronomy J. 67(2):219-223.
This study measured yield response of wheat to S applied with a range of N for the first crop and monitored residual S effects on yields of 3 subsequent crops. Significant N to S relationships were found. The first crop did not respond to S when N was deficient or optimal. Residual S increased straw yield in all crops and grain yield in 1 of 4 trials for the second crop, 3 of 3 trials for the third crop, and 2 of 2 trials for the fourth crop. Wheat response to residual S was influenced by N rates applied to the first wheat crop. High N and S fertilization resulted in early drought and lower yelds. Gradual release of residual S from recent organic matter apparently provided S at a rate adequate for efficient water use and maximum yield. T: Grain and straw yield response to S and N in first through fourth wheat crop following fertilization. The initial and residual effects of S on grain yield of wheat receiving optimum N.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us