WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Tuesday, March 20, 2018


Browse on keywords: fertility WA wheat

Use a different search term

Search results on 03/20/18

1396. Cook, F.D., F.G. Warder, and J.L. Doughty. 1957. Relationship of nitrate accumulation to yield response of wheat in some Saskatchewan soils.. Canadian J. Soil Sci. 37:84-88.
Good correlation between wheat yields and soil nitrate levels. Estimated that a significant yield increase from N fertilizers can be expected when the nitrate accumulation value is below 50 ppm N in soil from stubble fields or 40 ppm N in fallowed soils.

1165. Campbell, C.A., D.W.L. Read, R.P. Zentner, A.J. Leyshon, and W.S. Fer. 1983. First 12 years of a long-term crop rotation study in southwestern Saskatchewan.. Can. J. Plant Sci., 63:91-108.
On a crop-year basis, continuous wheat yields averaged 75% of fallow yields when recommended rates on N and P fertilizers were applied. Yield variability was lower for rotations that included high proportions of fallow than for continuous-type rotations. Fertilizer N applied at recommended rates increased yields of wheat grown on fallow by an average 5% and wheat grown on stubble by an average 7%. Application of P fertilizer at recommended rates increased yields of wheat grown on fallow and stubble by an average 12%. Total wheat production (kg/ha/yr) was inversely related to the frequency of fallow in the rotation. Continuous wheat (N and P applied) outproduced wheat grown on fallow in the 2-yr rotation by 53% over the 12-yr period.

1180. Campbell, C.A., R.P. Zentner and P.J. Johnson. 1988. Effect of crop rotation and fertilization on the quantitative relationship between spring wheat yields, available soil moisture, and precipitation.. Canadian J. Soil Sci., 68(1):1-16.
The effects of crop rotation and fertilization on the quantitative relationship between spring wheat yields, available soil moisture, and growing season precipitation were determined. Stubble-seeded wheat required 68 mm of moisture to produce the first kilogram per hectare of grain; fallow-seeded wheat required about 46mm. The lower threshold level of MU for grain production decreased from about 140mm to the values cited above; this has resulted in substantially greater moisture use efficiency in recent years likely due to better, more timely crop mangement and the improved cereal varieties.

1608. Doneen, L.D.. 1934. Nitrogen in relation to composition, growth and yield of wheat.. WA Agr. Expt. Sta. Bull. #296.
On soil with adequate N, adding sodium nitrate retarded wheat growth. The carbohydrate - N ratio of plant tissue was not affected by fertilizer treatment or variety. Under extreme conditions (e.g. variations in N or moisture) there were considerable differences in varietal adaptations. The addition of N after normal tillering caused production of new tillers and increased yields. Fall fertilization led to higher water use and spring moisture deficit. T: many tables. e.g.: Composition of total sugar, non-coagulate nitrogen, amino N, and nitrate on wheat grown under various soil treatments. Yield of grain and straw of wheat treated with sodium N. N removed from soil by grain and straw of wheat treated with different amounts of sodium N/ac. Yield of grain and straw of wheat treated with 500 lb. sodium N/ac.

2043. Fowler, D.B. and J. Brydon. 1989. No-till winter wheat production on the Canadian prairies: placement of urea and ammonium nitrate fertilizers.. Agron. J. 81:518-524.
A practical snow management system, which utilizes no-till seeding into standing stubble immediately after harvest, has permitted expansion of winter wheat production in western Canada. This study examined grain responses to urea and ammonium nitrate fertilizer banded and broadcast at seeding, or broadcast in the late fall or early spring. A moisture shortage biased the results. Fall banding prior to seeding helped reduce volatilization losses of urea (which were as much as 50%), but presented other problems and did not outperform broadcast ammonium nitrate.

2756. Huggins, D.R., W.L. Pan, and J.L. Smith. 1989. Improving yield, percent protein, and N use efficiency of no-till hard red spring wheat through crop rotation and fall N fertilization.. Proceedings, 40th Far West Fertilizer Conference,.
In a field experiment near Pullman, WA, all fall and split fall-spring N applications significantly increased percent protein and N uptake efficiency as compared to all spring applications, while yields were unaffected. Protein increase was attributed to enhanced late season uptake, due to better positional availability of deep soil N. In another experiment, yield of hard red spring wheat was 10% greater when no-tilled into Austrian winter pea stubble (for seed) as compared to winter wheat stubble, while grain N and percent protein were not affected. The difference in yield was not eliminated by optimized N rates, indicating other rotation effects.

2809. Hume, L.. 1982. The long-term effects of fertilizer application and three rotations on weed communities in wheat.. Can. J. Plant Sci., 62:741-750.
The effect of fertilizer application and three rotations (continuous cropping, fallow-wheat, and fallow-wheat-wheat rotations)on the species composition of the weed community was examined using rotations that had been running for 21-22 yrs. Fertilizer application tended to reduce community differences between continuous cropping and short-term wheat-fallow rotations. With the use of 2- or 3-yr wheat-fallow rotations and herbicide application, weed problems can be minimized in southeastern Saskatchewan.

3004. Jackson, T.L., H.M. Reisenauer and G.M. Horner. 1952. Nitrogen recommendations for wheat production in eastern Washington.. WA Agr. Expt. Sta. Circ. #179.
"The use of crop residues, green manure crops, and other soil building and soil conservation practices should be combined with the use of fertilizers." Sources of N: ammonium sulfate, ammonium nitrate, anhydrous ammonia, urea, and calcium nitrate. This publication covers amounts and methods of application. Amounts to be applied are predicated on desired yields. T: Application rate charts.

3695. Koehler, F.E.. 1962. The fact is - Semidwarf wheats should be given more nitrogen.. Proc., 13th Ann. Fert. Conf. of the PNW, Walla Walla, WA, June 26.

3715. Koehler, F.E.. 1964 (Jul). Relative effectiveness of various sources of nitrogen materials as fertilizers for wheat.. Proc. 15th Ann. Fertilizer Conf. PNW, Salem, OR; p. 39-45.
Tested 12 sources or combinations of N fertilizer, including various times of application. Three locations (22, 16, and 10" precip.). One year of data. Calcium nitrate performed best in the high rainfall site. No response to spring-applied N at the 16" precip. site.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us