WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Monday, December 10, 2018

Search CROPSYS

Browse on keywords: erosion tillage no-till

Use a different search term

Search results on 12/10/18

5725. Rasmussen, V.P. and R.L. Newhall. 1989. High residue conservation tillage increases soil moisture and profits. IN: Utah Agricultural Statistics, 1989. p. 121-124. Utah Agricultural Statistics Service, Salt Lake City, UT.
Three years of data are reported for several locations comparing a number of consevation tillage and cropping systems. The no-till and chemical fallow were better both for conserving soil and moisture, and generated the highest net returns. The chem fallow conserved about 1-2 inches of soil moisture. Erosion under the no-till chem fallow ranged from 1-5 T/ac compared to 17-30 T/ac with conventional tillage. The study included tests of continuous cropping, but more years are needed to make an economic comparison.

10406. Pan, W.L. and A.G. Hopkins. 1991. Plant development, and N and P use of winter barley. II. Responses to tillage and N management across eroded toposequences.. Plant Soil 135:21-29.
Winter barley was grown at three landscape positions of a representative toposequence in the Palouse region. Direct drilling (no-till) into crop residues increased yields by 16% over conventional tillage at an eroded ridgetop position, despite early season growth inhibition. Tillage system had no effect on grain production at other landscape positions that featured higher overall yields. Short-term benefits of no-till systems may be most evident at slope positions where water use is most limited.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us