WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Saturday, January 19, 2019


Browse on keywords: economics yield erosion

Use a different search term

Search results on 01/19/19

7424. Walker, D.J. and D.L. Young. 1982. Technical progress in yields - no substitute for soil conservation.. ID Agr. Expt. Sta. CIS #671.
Technological progress increased yield damage from erosion; higher yield reduction with successive erosion; yield damage from conventional tillage in wheat-pea rotation estimated at $8 for one year; no assurance that technology will continue to offset erosion - induced yield losses; leveling off yields in the last several years. T: erosion and yield change; technology and yield.

10546. Rasmussen, P.E. and C.L. Douglas Jr.. 1991. Effect of rill erosion during early vegetative growth on winter wheat yield.. Agron. J. 83:729-732.
Rill erosion effects on winter wheat growth and yield were determined in six fields where rill erosion occurred during early vegetative growth. Rill erosion reduced head density, dry matter yield, N uptake, and grain yield at all sites. The rill/non-rill grain yield ratio varied from 0.84 to 0.94. The estimated yield reduction per ha associated with average rill development was between 0.9 and 1.2%. Assuming a 36 Mg/ha soil loss, the calculated yield reduction from winter wheat fields yielding 5.2 Mg/ha is 88 kg grain/ha (about $13/ha for wheat valued at $0.147). This erosion cost would encompass a significant percentage of the landscape with sloping topography and is additional to any costs associated with long-term loss of soil productivity.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us