WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Monday, June 18, 2018

Search CROPSYS

Browse on keywords: economics tillage

Use a different search term

Search results on 06/18/18

1819. Elliott, L.F. (ed.). 1987. STEEP - Conservation concepts and accomplishments.. Washington State Univ. Publ., 662pp..
A compilation of 48 papers covering: tillage and plant maagement; erosion and runoff predictions; plant design; pest management; socio-economic; integrated systems; technology transfer for cropping systems; 22 technical notes. T: many

1219. Caplan, A.J.. 1986. Cost return and relative soil loss comparisons of alternative tillage systems.. MS Thesis.
Minimum tillage is less expensive than conventional. No-till is most expensive due to high chemical inputs. In the low precipitation zone, minimum till was 1.19 times less expenxive than conventional. Annual peas/wheat in high precip. zone was 1.5 times less expensive with min-till than conventional.

1503. Dalley, W.J.. 1970. Alternatives in machinery management on Juab County, Utah dry farms.. M.S. Thesis, USU, Logan, UT.
An economic study of farm size versus per acre equipment costs of production. Machine costs per acre of grain produced and total costs (fuel, labor, plus machinery) for the 3 size classes were, respectively: 100-500 ac. - $10.99, $16.27; 500-1000 ac. - $5.66, $10.25; 1000-2000 ac. - $3.21, $7.13.

2625. Hoag, D., H. Hinman and T. Hoffman. 1984. 1984 costs of alternative tillage systems, Central Whitman Co., WA. WSU Ext. Serv., Ext. Bull. #850.
Compares the cost of conventional and minimum tillage for a summer fallow-winter wheat-spring barley rotation. 15 to 18 inches of annual precip.

4484. Michalson, E.L.. 1987. Tillage and cropping systems alternatives: Economics and productivity. p. 437-446.. IN: L.F. Elliott (ed.). STEEP - Conservation Concepts and Accomplishments. WSU Publications..
In most cases farmers would face cost increases by adopting conservation practices. This provides a rational for state/federal intervention to offset costs. The economic emphasis of soil conservation has shifted from the value of tons of soil to the farmer to the cost of tons of sediment to the public. T: Economic comparison of winter wheat/spring pea rotation with winter wheat/spring barley/spring pea rotation. Economic comparison of conventional vs. no-till on a 3000 acre summer fallow wheat farm in southwest Idaho. Estimated income above the variable costs, per yield levels.

4827. Nelson, E.. 1908. Dry farming in Idaho. ID Agr. Expt. Sta. Bull. #62.
Caldwell, ID - better sites yield 30-40 bu/ac wheat, even 60; alfalfa - several cuttings; drier sites yield 20-30 bu/ac; in Utah, 1" of rain stored in soil produces 2.5 bu wheat; summerfallow necessary; eastern WA - late spring plowing with early disking and harrowing is effective weed control; "slicker" - homemade tool in Columbia Basin to kill weeds; Subsurface packer - after plowing, increased yields in Columbia Basin 25%. Idaho soils - short on N and humus; alternate crop possibilities: milo, sorghum, field peas, alfalfa, grass; also spring emer (speltz), hulled wheat (adapted to arid conditions); WW vs. SW has 4-5 bu/ac yield advantage.

5389. Prato, T., H. Shi, R. Rhew, and M. Brusven. 1989. Soil erosion and nonpoint-source pollution control in an Idaho watershed.. J. Soil Water Cons. 44:323-328.
Offsite economic damage from cropland erosion has been estimated at between $2-6 billion. This study modelled erosion reduction, improvements in surface water quality, and impact on net returns for a watershed near Lapwai, Idaho, using a 1000 acre wheat-pea farm as the prototype. It concluded that total net farm income in the watershed increased 1.5% when average erosion was reduced to T. The study used a GIS system to model the outcomes of farm practice choices. Soil erosion was calculated with the USLE. Water quality impacts were estimated with AGNPS. Eleven resource management systems were modelled for each of the 16 farms in the watershed. The results indicate that minimum tillage with either cross-slope farming or contour farming is the most economically efficient resource management system for reducing erosion. Averaged over all farms, such a system increased annualized net returns by $1.05/ac and $1.38/ac, and reduced erosion by 5.2 T/ac/yr and 5.6 T/ac/yr for the min-til cross-slope and min-til contour systems respectively. To achieve a 70% erosion reduction (equalling 2T), no-till and permanent vegetation were the required systems. Net farm income increased 1.5% when total erosion was reduced 40%, and decreased 35% when erosion was reduced 70%. Total net farm income declined rapidly beyond 40% erosion reduction. Figure 5 shows net income versus erosion reduction.

5725. Rasmussen, V.P. and R.L. Newhall. 1989. High residue conservation tillage increases soil moisture and profits. IN: Utah Agricultural Statistics, 1989. p. 121-124. Utah Agricultural Statistics Service, Salt Lake City, UT.
Three years of data are reported for several locations comparing a number of consevation tillage and cropping systems. The no-till and chemical fallow were better both for conserving soil and moisture, and generated the highest net returns. The chem fallow conserved about 1-2 inches of soil moisture. Erosion under the no-till chem fallow ranged from 1-5 T/ac compared to 17-30 T/ac with conventional tillage. The study included tests of continuous cropping, but more years are needed to make an economic comparison.

6957. USDA. 1978. Palouse cooperative river basin study.. SCS, FS, ESCS - USDA.
Excellent summary of soil erosion problem and possible management approaches in the Palouse; extensive data on land use, soil erosion, future scenarios; history of agriculture in the area; bibliography.

11204. Matheson, N., B. Rusmore, J.R. Sims, M. Spengler, and E.L. Michalson. 1991. Cereal-legume cropping systems: nine farm case studies in the dryland northern plains, Canadian prairies, and intermountain Northwest.. AERO, 44 N. Last Chance Gulch, Helena, MT 59601.
The farm case studies presented in this book include details of the crop rotations, tillage, fertilization, and pest control practices used by the farms. Farms were chosen for their innovative or alternative practices. Partial budgets for each crop on each farm are presented to provide a reference point for the economic performance of alternative dryland cropping systems. Comparisons with more conventional systems are not made.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us