WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Friday, September 21, 2018

Search CROPSYS

Browse on keywords: economics erosion UT

Use a different search term

Search results on 09/21/18

5389. Prato, T., H. Shi, R. Rhew, and M. Brusven. 1989. Soil erosion and nonpoint-source pollution control in an Idaho watershed.. J. Soil Water Cons. 44:323-328.
Offsite economic damage from cropland erosion has been estimated at between $2-6 billion. This study modelled erosion reduction, improvements in surface water quality, and impact on net returns for a watershed near Lapwai, Idaho, using a 1000 acre wheat-pea farm as the prototype. It concluded that total net farm income in the watershed increased 1.5% when average erosion was reduced to T. The study used a GIS system to model the outcomes of farm practice choices. Soil erosion was calculated with the USLE. Water quality impacts were estimated with AGNPS. Eleven resource management systems were modelled for each of the 16 farms in the watershed. The results indicate that minimum tillage with either cross-slope farming or contour farming is the most economically efficient resource management system for reducing erosion. Averaged over all farms, such a system increased annualized net returns by $1.05/ac and $1.38/ac, and reduced erosion by 5.2 T/ac/yr and 5.6 T/ac/yr for the min-til cross-slope and min-til contour systems respectively. To achieve a 70% erosion reduction (equalling 2T), no-till and permanent vegetation were the required systems. Net farm income increased 1.5% when total erosion was reduced 40%, and decreased 35% when erosion was reduced 70%. Total net farm income declined rapidly beyond 40% erosion reduction. Figure 5 shows net income versus erosion reduction.

5725. Rasmussen, V.P. and R.L. Newhall. 1989. High residue conservation tillage increases soil moisture and profits. IN: Utah Agricultural Statistics, 1989. p. 121-124. Utah Agricultural Statistics Service, Salt Lake City, UT.
Three years of data are reported for several locations comparing a number of consevation tillage and cropping systems. The no-till and chemical fallow were better both for conserving soil and moisture, and generated the highest net returns. The chem fallow conserved about 1-2 inches of soil moisture. Erosion under the no-till chem fallow ranged from 1-5 T/ac compared to 17-30 T/ac with conventional tillage. The study included tests of continuous cropping, but more years are needed to make an economic comparison.

7414. Walker, D.J.. 1990 Jan.. Soil Loss Damage Model. STEEP Annual Review, Moscow, ID.
A PC computer model for estimating soil loss damage over time was demonstrated. The model indicates at what point in time it becomes "profitable" to switch to a conservation tillage or management system. A penalty for lost productivity due to soil erosion is calculated and carried forward a specified number of years. Walker indicated that the yield penalty for peas under conservation tillage is 14%. A sample printout shows all the input data and the topsoil depth, current profit advantage, erosion cost, and net value for each year of the projection.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us