WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Tuesday, January 23, 2018

Search CROPSYS

Browse on keywords: crop rotation WA ID

Use a different search term

Search results on 01/23/18

784. Bevan, R., W.W. Pawson and O.L. Brough. 1962. A comparison of cropping systems for the Washington - Idaho Palouse area.. ID Agr. Expt. Sta. Bull. #390.
T: yield, production cost, net income

835. Bezdicek, D.F.. 1990 Jan.. Crop rotation studies. presentation at STEEP Annual Review, Moscow, ID.
Several studies were described in which different legume green manures were grown before winter wheat and treated with different residue management. Wheat yields were consistently depressed following chemically-killed legumes in the first study, but not in the second. Under chemical kill, there was a 40 bu/ac wheat yield response to soil fumigation. Part of the fumigation response appeared to be higher available N. Also, it appeared that chemical kill may be increasing N mineralization. Results are being prepared for publication.

1819. Elliott, L.F. (ed.). 1987. STEEP - Conservation concepts and accomplishments.. Washington State Univ. Publ., 662pp..
A compilation of 48 papers covering: tillage and plant maagement; erosion and runoff predictions; plant design; pest management; socio-economic; integrated systems; technology transfer for cropping systems; 22 technical notes. T: many

3319. Young, D.L. and K.M. Painter. 1991. Crop rotation flexibility in the 1990 Farm Bill: Economics perspective.. Paper presented at Farming for Profit and Stewardship Conference, Lewiston, ID, Feb. 14, 1991..
Four provisions of the 1990 Farm Bill are discussed which offer growers potential for increased diversification. These are 15% mandatory unpaid flex acreage, 10% optional unpaid flex acreage, integrated farm management plan option, and modified 0/92 option. Whether these will actually provide profitable opportunities will depend upon the particular characteristics of each farm.

3481. Kaiser, V.G. and A.W. Jacklin. 1939. Annual progress report for field test "effect of cropping systems".. USDA-SCS.
Better sweetclover stands when seeded alone or with grass; peas better than cereals; hi (>10 lb/ac) seeding rate leads to better stands; best seeding date April 10-May 7; more weeds in second year when grown with companion crop; sweetclover/grass mix gave greater wheat yield increase than SC alone, also had less erosion; excellent thorough study. T: Yield, erosion X agronomic management.

6174. Severance, G., B. Hunter and P. Eke. 1930. Farming systems for eastern Washington and northern Idaho.. ID Agr. Expt. Sta. Bull. #173.
same as WA AES Bull. 244

6684. Stephens, D.E.. 1944. Effect of tillage and cropping practices on runoff, erosion, and crop yields in the wheat growing areas of Washington, Idaho, and Oregon.. USDA-SCS. Conservation practices on wheat lands of the Pacific Northwest..
An excellent summary of the dryland experiment station research in WA, ID and OR. Describes research on stubble mulching, tillage implements, crop rotations, fallow, etc. The use of sweetclover or alfalfa-grass were encouraged. T: yield, runoff, soil loss by tillage, rotation, fertilizer.

7242. Veseth, R.. 1989. Reduced tillage for green manure legumes. STEEP Conservation Farming Update, Summer 1989, p. 3-5.
Three tillages were compared for incorporating Austrian winter pea or red clover green manure: moldboard plow plus shallow disk; shallow disk twice; no-till. At each N fertilizer rate, winter wheat yields were slightly higher with reduced tillage than with conventional tillage. A 60 lb/ac N rate substantially increased wheat yields after green manure, while the 120 N rate gave little or no yield increase. With no N fertilizer, the yield of winter wheat after both green manure crops compared favorably with yield of no-till winter wheat after a seed crop of spring peas. Legume N uptake by a following wheat crop was not affected by residue treatment, but recovery of legume N from the soil was about 10% lower with surface application than with soil incorporation. Also, wheat yields after chemically-killed green manures were consistently lower, and could not be fully recovered with fertilizer N. The mechanism of this suppression is not known.

7693. Yan, Ying. 1989. A model for predicting soil loss ratio and crop production in eastern Washington. M.S. Thesis, Dept. of Agronomy and Soils, WSU, Pullman, WA.
The model (SHUI) predicts soil erosion and crop production under different crop rotation, tillage operation, and crop residue management conditions. It simulates the soil-water budget, crop and root growth, top dry matter production, grain yield, and residue production and loss, and predicts the soil loss ratio. Validation data are included.

8384. Beus, C., D. Dillman, and J. Carlson. 1990. Palouse agriculture: a survey on production practices, policies, and problems.. unpublished results, Dept. of Rural Sociology, Washington St. Univ., Pullman, WA 99164.
This random survey was done in the Palouse area of eastern WA and northern ID, with a random sample of about 260 farmers. Average farm size was 1392 acres. One-third of the respondents would like to change their current rotation, primarily to reduce disease problems, but consider government programs to be the biggest barrier. Desire to use no-till planting was evenly split. Half the respondents felt they were using most of the available erosion control practices. Large percentages (>60%) felt that contour tillage, surface roughness, no-till, good plant cover, and tilth were very important erosion control factors. Herbicide and fertilizer use trends over the past five years were normally distributed. Use of fungicides on wheat (other than seed treatment) was generally less than 20%. Half the farmers currently use soil testing, and of those, 90% tested for residual N to 4-5 ft. depth. Half the respondents felt they had cut back on pesticide and fertilizer use since their high point, while only 10-20% felt they would do so in the future. About 65% had heard of the LISA program, and 26% indicated opposition to it.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us