WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Wednesday, April 25, 2018


Browse on keywords: crop rotation WA

Use a different search term

Search results on 04/25/18

643. Baker, V.W. and I.P. Swanson. 1962. Economic effects of a grass-legume rotation in Palouse wheat-pea area.. WA Agr. Expt. Sta. Circular #183.
Farms using a grass-legume rotation show important economic advantages over other farms in comparison of 5 year data from 3 pairs of Palouse farms. T: Amount of cropland by type of crop. Average annual crop production. Cost inputs and income per cropland acre. Calculated erosion losses.

765. Benson, V., W. Goldstein, D. Young, J. Williams, and C. Jones. 1988. Impacts of cropping practices on nitrogen use and movement.. Proc. Intl. Conf. on Dryland Farming.
Conventional and PALS practices were used as inputs for the EPIC model to simulate the effects of the systems over 108 years on an Athena soil. Total erosion over 108 yr under PALS was 40% less than the conventional system. Nitrogen loss through water was 25% less under PALS than conventional. Percolation loss of N was zero for both systems. Neither system had significant increase or decrease in yields after 108 yr of erosion.

784. Bevan, R., W.W. Pawson and O.L. Brough. 1962. A comparison of cropping systems for the Washington - Idaho Palouse area.. ID Agr. Expt. Sta. Bull. #390.
T: yield, production cost, net income

826. Bezdicek, D. and R. Lockerman. no date. Crop rotation and the response of cereal crops to nitrogen in the PNW. unpublished.
Experiments conducted at Pullman, WA and Bozeman, MT. Year 1 - legumes (rainfall -Pullman 500 mm, Bozeman 480 mm). Year 2 -Pullman winter wheat + N (rainfall 350 mm); Bozeman barley + N (rainfall 200 mm). Compared fababean, pea, lentil, chickpea, fallow at both locations. Pullman legumes were used as green manure, Bozeman legumes were harvested for seed. N fertilizer equivalents ranged from 30-86 kg/ha N at Pullman (fallow = 125) and from 27-81 kg/ha N at Bozeman (fallow = 53). All cereals responded to added N, although less so at Pullman. More N was removed in seed than was fixed. Seed legumes appeared to fix 50-100 kg/ha N. The rotation effect was more significant at Pullman. T: cereal yields; fertilizer N equivalent; moisture depletion.

835. Bezdicek, D.F.. 1990 Jan.. Crop rotation studies. presentation at STEEP Annual Review, Moscow, ID.
Several studies were described in which different legume green manures were grown before winter wheat and treated with different residue management. Wheat yields were consistently depressed following chemically-killed legumes in the first study, but not in the second. Under chemical kill, there was a 40 bu/ac wheat yield response to soil fumigation. Part of the fumigation response appeared to be higher available N. Also, it appeared that chemical kill may be increasing N mineralization. Results are being prepared for publication.

1819. Elliott, L.F. (ed.). 1987. STEEP - Conservation concepts and accomplishments.. Washington State Univ. Publ., 662pp..
A compilation of 48 papers covering: tillage and plant maagement; erosion and runoff predictions; plant design; pest management; socio-economic; integrated systems; technology transfer for cropping systems; 22 technical notes. T: many

978. Bolton, H., L.F. Elliott, R.I. Papendick and D.F. Bezdicek. 1985. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices.. Soil Biol. Biochem., 17:297-302.
The microbial properties of two adjacent fields were compared, one being under organic management, the other conventional management. Microbial indices tended to be more favorable on the organic field, with higher microbial biomass and enzyme activities.

1015. Bowren, K.E. (ed.).. 1986. Soil improvement with legumes.. Saskatchewan Agriculture, Soils and Crops Branch.
This excellent publication summarizes research over the past 40 years pertaining to the use of legumes for soil improvement in Saskatchewan. The role of legumes in maintaining soil nitrogen was crucial prior to available fertilizer. But their value extends beyond their nitrogen contribution to the improvement of soil physical properties. One study found the tillage draft requirement to be up to one-third lower where legumes had been a regular part of the rotation. The positive effects of alfalfa were measured for over ten years in a series of wheat crops compared to plots with no alfalfa. Over 17 years, the average grain yield from a wheat-wheat/clover-clover green manure rotation with no fertilizer were 30% higher that a wheat-wheat-fallow rotation with fertilizer. Moisture depletion by legumes is the biggest hurdle to their use in very dry areas. Adequate fertility for the legumes is necessary to maximize their benefit. Use of selected Rhizobium strains can improve nitrogen fixation, especially on acid soils. Several varieties of sweetclover are mentioned with adaptation to forage or green manure use. The booklet has numerous color photos and many data tables and figures.

1165. Campbell, C.A., D.W.L. Read, R.P. Zentner, A.J. Leyshon, and W.S. Fer. 1983. First 12 years of a long-term crop rotation study in southwestern Saskatchewan.. Can. J. Plant Sci., 63:91-108.
On a crop-year basis, continuous wheat yields averaged 75% of fallow yields when recommended rates on N and P fertilizers were applied. Yield variability was lower for rotations that included high proportions of fallow than for continuous-type rotations. Fertilizer N applied at recommended rates increased yields of wheat grown on fallow by an average 5% and wheat grown on stubble by an average 7%. Application of P fertilizer at recommended rates increased yields of wheat grown on fallow and stubble by an average 12%. Total wheat production (kg/ha/yr) was inversely related to the frequency of fallow in the rotation. Continuous wheat (N and P applied) outproduced wheat grown on fallow in the 2-yr rotation by 53% over the 12-yr period.

1172. Campbell, C.A., K. Bowren, G. LaFond, H. Janzen, and R.P. Zentner. 1989. Effect of crop rotations on soi organic matter in two black chernozems.. Soil and Crop Workshop, Univ. Saskatchewan, Saskatoon, Feb. 1989.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us