WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Wednesday, June 20, 2018

Search CROPSYS

Browse on keywords: crop rotation MT NE

Use a different search term

Search results on 06/20/18

7979. Sims, J.R.. 1971. The resource inventory method of determining cropping practices for dryland farming.. Proc. of Saline Seep Workshop, Highwood Alkali Control Assoc., Great Falls, MT, Feb. 22-23.

7816. Ford, G.L. and J.L. Krall. 1979. The history of summer fallow in Montana.. Montana Agr. Expt. Sta. Bull. 704.
This excellent publication describes the historical development of summer fallow use in dry farming in Montana and some of its consequences. Data from 1974 indicate that aboaut one-third of the cropland in the state was in summer fallow (5 million acres). In Montana, the fallow period is 14 and 21 months for winter and spring grain respectively. Results from the early 1900's indicated more profitable returns from alternate crop-fallow compared to continuous cropping. This was due to both more moisture and available nitrogen built up under fallow. Summer fallow was not widely adopted until the 1920's, when a series of very unfavorable weather years occurred and showed the risk reduction value of fallow. Serious wind erosion became a problem at that time and led to the introduction and widespread adoption of narrow alternate crop-fallow strips perpendicular to the wind direction. Fallow led to a greater decrease in soil organic matter and total nitrogen (40 and 35 % decrease) than with continuous cropping (35 and 27 % decrease). Further research found that continuous cropping made more efficient use of moisture than fallow. As nitrogen fertilizer and herbicides became available, fallow was no longer as important for these aspects. Summer fallow has also caused the development of saline seep conditions on hundreds of thousands of acres. This condition occurs where summer fallow stores more moisture than a crop uses, and the water then moves deeper in the soil profile until it hits a confining layer, causing it to move laterally with dissolved salts, and to break out as a seep further downslope. In one watershed, the percentage of total land area affected by saline seep increase from 0.1% to 19% over 30 years. Continuous cropping and use of deep-rooted plants such as alfalfa can help solve this problem. The authors propose a new approach to cropping intensity, one called "flex-cropping" in which the decision to plant a crop is based on the presence of at least 3 inches of stored soil water at seeding time. This system would reduce some of the negative effects of summer fallow while also reducing exposure to drought risk. Federal acreage restrictions under the commodity programs pose a major barrier to this approach.

9962. Chilcott, E.C.. 1910. A study of cultivation methods and crop rotations for the Great Plains area.. USDA Bureau of Plant Industry, Bulletin 187. 78 pp..
This paper reports the results of a four-year experiment in crop rotation and cultivation methods conducted at eleven stations in the Great Plains area. Some of the questions asked of this experiment were how can the largest average yields of corn, spring wheat, oats and barley be obtained, do moisture conservation methods pay where continuous cropping to the same crop is practiced, and can green manuring be profitably substituted for summer tillage? The results found that a 3-year rotation of corn, wheat and oats gave the most profitable returns. Continous cropping with moisture conservation methods of fall plowing and fall, winter and spring tillage did not give results to warrant its recommendation. The most highly recommended practice was that of green manuring. For greatest benefits to the soil, it was recommended to plow in a green manure crop in early season, with little summer tillage, until wheat planting time.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us