WSU Tree Fruit Research & Extension Center

Organic & Integrated Tree Fruit Production

Wednesday, December 12, 2018

Search CROPSYS

Browse on keywords: crop rotation ID OR

Use a different search term

Search results on 12/12/18

1819. Elliott, L.F. (ed.). 1987. STEEP - Conservation concepts and accomplishments.. Washington State Univ. Publ., 662pp..
A compilation of 48 papers covering: tillage and plant maagement; erosion and runoff predictions; plant design; pest management; socio-economic; integrated systems; technology transfer for cropping systems; 22 technical notes. T: many

2928. Idaho Agr. Expt. Sta.. 1949. Annual report.. ID Agr. Expt. Sta. Bull. #276.
Sweetclover maintained OM levels, slight loss in W-P; N fertilizer reduced OM losses where straw was removed.

2249. Granatstein, D., D. Bezdicek, L. Elliott, V. Cochran, and J. Hammel. 1987. Long-term tillage and rotation effects on soil microbial biomass, carbon, and nitrogen.. Biol. Fertil. Soils 5:265-270..
This research examined plots that had been under different tillage and rotational management for 12 years. Rotations were WP (winter wheat-spring pea); WBP (winter wheat-spring barley-spring pea); WPA (winter wheat-spring pea undersown with red clover and alfalfa)-clover/alfalfa GM). The two tillages studied were moldboard plowing and no-till. There was little difference in microbial biomass, C or N below 5 cm in the no-till, with surface values being highest. Few differences due to rotation could be detected. The WPA rotation had the highest total C and N. Microbial biomass was higher in no-till surface soils where the preceding crop had provided high residue, while the opposite was true for tilled plots. Microbial biomass levels changed little from April to September, and then jumped higher in October with the advent of moisture.

6359. Smiley, R., D. Wilkins, W. Uddin, S. Ott, K. Rhinhart, and S. Case. 1989. Rhizoctonia root rot of wheat and barley.. OR Agr. Expt. Sta. Special Report 840, p. 68-79..
Rhizoctonia root rot is now considered the most severe root disease of barley in the PNW. It is more important than take-all and Pythium on wheat produced in drier areas (<16" precip.). Based on long-term plots at Pendleton, different management systems are unlikely to greatly influence the biological resistance of soils to Rhizoctonia. Rotational crops susceptible to Rhizoctonia include wheat, barley, peas, chickpeas, lentils, and rapeseed. The disease is less apparent on small grains after legumes than after cereals. Rhizoctonia damage is always highest on no-till systems, but yields may not suffer due to improved water relations under conservation tillage. Australian research indicates that applications of N and P fertilizers can reduce the disease. There appear to be detrimental herbicide interactions with Rhizoctonia, particularly Glean on high pH soils. Also, the use of glyphosate increased disease incidence, perhaps by signalling the pathogens to move from the dying plants to newly seeded ones. A delay of at least 2 weeks is suggested between chem kill and planting of a new crop.

6684. Stephens, D.E.. 1944. Effect of tillage and cropping practices on runoff, erosion, and crop yields in the wheat growing areas of Washington, Idaho, and Oregon.. USDA-SCS. Conservation practices on wheat lands of the Pacific Northwest..
An excellent summary of the dryland experiment station research in WA, ID and OR. Describes research on stubble mulching, tillage implements, crop rotations, fallow, etc. The use of sweetclover or alfalfa-grass were encouraged. T: yield, runoff, soil loss by tillage, rotation, fertilizer.

10235. Collins, H.P., P.E. Rasmussen, and C.L. Douglas Jr.. 1992. Crop rotation and residue management effects on soil carbon and microbial dynamics.. Soil Sci. Soc. Amer. J. 56:in press.
Total soil and microbial biomass C and N contents were significantly greater in annual crop than wheat-fallow rotations, except when manure was applied. Microbial biomass C in annual crop and wheat-fallow rotations averaged 50 and 25%, repsectively, of that in grass pasture. Residue management significantly influenced the level of microbial biomass C; for example, burning residues reduced microbial biomass to 57% of that in plots receiving manure. Both microbial counts and microbial biomass were higher in early spring than other seasons. Annual cropping significantly reduced declines in soil organic matter and microbial biomass.

10256. Mallawatantri, A.P.. 1990. Effects of long-term management, slope position, and depth on pesticide transport parameters.. manuscript, Dept. of Crops & Soils, Washington State University, Pullman..
Pesticide adsoprtion was compared on soils from adjacent farms, with one farm using a low-input system and the other a conventional system. Adsorption of pesticide by soil is signficantly controlled by the organic carbon content of the soil. Carbon content was higher on the low-input farm, and also varied with landscape position on both farms. The relative adsorption of the four pesticides studed was diuron > metribuzin, triallate > 2,4-D. Adsorption was higher on the low-input farm, at bottom slope positions with higher soil carbon, and in surface soils than in subsoils. Weakly adsorbed pesticides should be avoided on top slope and eroded areas due to increased risk of movement. The green manure rotation on the low-input farm reduced potential pesticide transport due to higher soil carbon levels.

Use a different search term

Tree Fruit Research & Extension Center, 1100 N Western Ave, Washington State University, Wenatchee WA 98801, 509-663-8181, Contact Us